IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1484-d1360296.html
   My bibliography  Save this article

Review of the Integration of Hybrid Electric Turbochargers for Mass-Produced Road Vehicles

Author

Listed:
  • Cosmin Constantin Suciu

    (Faculty of Mechanical Engineering, Politehnica University of Timisoara, M. Viteazu Bv. No. 1, 300222 Timisoara, Romania)

  • Sorin Vlad Igret

    (Faculty of Engineering, “Aurel Vlaicu” University of Arad, Elena Drăgoi Street, No. 2, 310330 Arad, Romania)

  • Ion Vetres

    (Faculty of Mechanical Engineering, Politehnica University of Timisoara, M. Viteazu Bv. No. 1, 300222 Timisoara, Romania)

  • Ioana Ionel

    (Faculty of Mechanical Engineering, Politehnica University of Timisoara, M. Viteazu Bv. No. 1, 300222 Timisoara, Romania)

Abstract

This study presents the findings of a comprehensive SWOT analysis on the integration of hybrid electric turbochargers (HETs) in mass-produced road vehicles. Through a synthesis of multiple research findings, this study compared the performance of HETs on thermal engines versus traditional turbochargers and HETs on thermal engines versus HETs on hybrid engines. The analysis highlights key strengths, weaknesses, opportunities, and threats associated with the adoption of HET technology in the automotive industry. The results of the SWOT analysis provide valuable insights for both manufacturers and consumers regarding the feasibility and benefits of adopting HET technology in modern vehicles. By elucidating the fundamental mechanics of turbochargers and demonstrating the potential of hybrid electric turbocharging, this study contributes to a deeper understanding of the role of HETs in shaping the future of automotive engineering. In conclusion, this study underscores the potential of HETs to substantially mitigate the environmental impact of the transportation sector by reducing emissions and conserving energy. The novelty of this study is reflected in its comprehensive synthesis of multiple research findings, offering insights into the feasibility and benefits of adopting HET technology in modern vehicles, thereby contributing to a deeper understanding of the role of HETs in shaping the future of automotive engineering and highlighting their continued significance, as evidenced by the systematic SWOT analysis presented. Their ability to optimize fuel efficiency and power output, coupled with the feasibility of downsized engines, positions HETs as an attractive option for sustainable mobility solutions. Further research is warranted to comprehensively understand the environmental and economic implications of widespread HET adoption.

Suggested Citation

  • Cosmin Constantin Suciu & Sorin Vlad Igret & Ion Vetres & Ioana Ionel, 2024. "Review of the Integration of Hybrid Electric Turbochargers for Mass-Produced Road Vehicles," Energies, MDPI, vol. 17(6), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1484-:d:1360296
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1484/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1484/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zamboni, Giorgio & Moggia, Simone & Capobianco, Massimo, 2016. "Hybrid EGR and turbocharging systems control for low NOX and fuel consumption in an automotive diesel engine," Applied Energy, Elsevier, vol. 165(C), pages 839-848.
    2. Emiliano Pipitone & Salvatore Caltabellotta & Antonino Sferlazza & Maurizio Cirrincione, 2023. "Hybrid Propulsion Efficiency Increment through Exhaust Energy Recovery—Part 2: Numerical Simulation Results," Energies, MDPI, vol. 16(5), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baek, Seungju & Lee, Hyeonjik & Lee, Kihyung, 2021. "Fuel efficiency and exhaust characteristics of turbocharged diesel engine equipped with an electric supercharger," Energy, Elsevier, vol. 214(C).
    2. Jarosław Ziółkowski & Mateusz Oszczypała & Jerzy Małachowski & Joanna Szkutnik-Rogoż, 2021. "Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles," Energies, MDPI, vol. 14(9), pages 1-23, May.
    3. Reihani, Amin & Hoard, John & Klinkert, Stefan & Kuan, Chih-Kuang & Styles, Daniel & McConville, Greg, 2020. "Experimental response surface study of the effects of low-pressure exhaust gas recirculation mixing on turbocharger compressor performance," Applied Energy, Elsevier, vol. 261(C).
    4. Zhu, Dengting & Zheng, Xinqian, 2019. "Fuel consumption and emission characteristics in asymmetric twin-scroll turbocharged diesel engine with two exhaust gas recirculation circuits," Applied Energy, Elsevier, vol. 238(C), pages 985-995.
    5. Lu, Kai & Bai, Shuzhan & Zang, Zhicheng & Li, Guoxiang, 2023. "Study on urea deposits risk of after-treatment system based on deposits boundary method," Energy, Elsevier, vol. 267(C).
    6. Deng, Yuanwang & Liu, Huawei & Zhao, Xiaohuan & E, Jiaqiang & Chen, Jianmei, 2018. "Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model," Applied Energy, Elsevier, vol. 210(C), pages 279-287.
    7. Benajes, J. & Novella, R. & Pastor, J.M. & Hernández-López, A. & Duverger, T., 2017. "A computational analysis of the impact of bore-to-stroke ratio on emissions and efficiency of a HSDI engine," Applied Energy, Elsevier, vol. 205(C), pages 903-910.
    8. Mohd Muqeem & Ahmad Faizan Sherwani & Mukhtar Ahmad & Zahid Akhtar Khan, 2018. "Optimization of diesel engine input parameters for reducing hydrocarbon emission and smoke opacity using Taguchi method and analysis of variance," Energy & Environment, , vol. 29(3), pages 410-431, May.
    9. Sangram Kishore Nanda & Boru Jia & Andrew Smallbone & Anthony Paul Roskilly, 2017. "Fundamental Analysis of Thermal Overload in Diesel Engines: Hypothesis and Validation," Energies, MDPI, vol. 10(3), pages 1-12, March.
    10. Park, Jungsoo & Choi, Jungwook, 2016. "Optimization of dual-loop exhaust gas recirculation splitting for a light-duty diesel engine with model-based control," Applied Energy, Elsevier, vol. 181(C), pages 268-277.
    11. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    12. Baek, Seungju & Woo, Seungchul & Kim, Youngkun & Lee, Kihyung, 2019. "Prediction of turbocharged diesel engine performance equipped with an electric supercharger using 1D simulation," Energy, Elsevier, vol. 185(C), pages 213-228.
    13. Bahiuddin, Irfan & Mazlan, Saiful Amri & Imaduddin, Fitrian & Ubaidillah,, 2017. "A new control-oriented transient model of variable geometry turbocharger," Energy, Elsevier, vol. 125(C), pages 297-312.
    14. Giorgio Zamboni, 2018. "A Study on Combustion Parameters in an Automotive Turbocharged Diesel Engine," Energies, MDPI, vol. 11(10), pages 1-21, September.
    15. Tsokolis, D. & Tsiakmakis, S. & Dimaratos, A. & Fontaras, G. & Pistikopoulos, P. & Ciuffo, B. & Samaras, Z., 2016. "Fuel consumption and CO2 emissions of passenger cars over the New Worldwide Harmonized Test Protocol," Applied Energy, Elsevier, vol. 179(C), pages 1152-1165.
    16. Ko, Jinyoung & Jin, Dongyoung & Jang, Wonwook & Myung, Cha-Lee & Kwon, Sangil & Park, Simsoo, 2017. "Comparative investigation of NOx emission characteristics from a Euro 6-compliant diesel passenger car over the NEDC and WLTC at various ambient temperatures," Applied Energy, Elsevier, vol. 187(C), pages 652-662.
    17. Giorgio Zamboni & Simone Moggia & Massimo Capobianco, 2017. "Effects of a Dual-Loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine," Energies, MDPI, vol. 10(1), pages 1-18, January.
    18. Park, Sangjun & Cho, Jungkeun & Park, Jungsoo, 2019. "Numerical methodology on virtual model extension and system-level optimization of light-duty diesel vehicle with dual-loop exhaust gas recirculation," Applied Energy, Elsevier, vol. 242(C), pages 1422-1435.
    19. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1484-:d:1360296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.