IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v227y2018icp555-563.html
   My bibliography  Save this article

Molecular dynamics simulations of the local structures and transport properties of Na2CO3 and K2CO3

Author

Listed:
  • Ding, Jing
  • Pan, Gechuanqi
  • Du, Lichan
  • Lu, Jianfeng
  • Wang, Weilong
  • Wei, Xiaolan
  • Li, Jiang

Abstract

Molten alkali carbonates has been researched as one of the most promising thermal energy storage (TES) materials in Concentrating Solar Power (CSP) and received extensive attentions. Some attractive properties must be determined accurately, such as thermal conductivity, and viscosity. over a wide temperature range. However, these significant thermal and transport properties are difficult to be obtained for experiments on account of high-temperature extreme conditions. Molecular dynamics (MD) is an alternative way to predict these properties for molten salts. Systematic results including density, thermal conductivity and shear viscosity as a function of temperature from molecular dynamics simulations of molten alkali carbonates are presented in detail in this paper. Both reverse nonequilibrium molecular dynamics (RNEMD) and nonequilibrium molecular dynamics (NEMD) methods are tried for thermal conductivity and viscosity, and then the results are compared to experimental values. The temperature dependence are investigated and analyzed by correlating transport properties with local structures. The results show that the Tosi-Fumi potential predicts negative temperature dependences for both viscosity and thermal conductivity of the alkali carbonates. The simulation results are in good agreement with the experimental data available in the literature.

Suggested Citation

  • Ding, Jing & Pan, Gechuanqi & Du, Lichan & Lu, Jianfeng & Wang, Weilong & Wei, Xiaolan & Li, Jiang, 2018. "Molecular dynamics simulations of the local structures and transport properties of Na2CO3 and K2CO3," Applied Energy, Elsevier, vol. 227(C), pages 555-563.
  • Handle: RePEc:eee:appene:v:227:y:2018:i:c:p:555-563
    DOI: 10.1016/j.apenergy.2017.07.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917308899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.07.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hao, Wenbin & He, Xiaojin & Mi, Yongli, 2014. "Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source," Applied Energy, Elsevier, vol. 135(C), pages 174-181.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haiming Long & Yunkun Lu & Liang Chang & Haifeng Zhang & Jingcen Zhang & Gaoqun Zhang & Junjie Hao, 2022. "Molecular Dynamics Simulation of Thermophysical Properties and the Microstructure of Na 2 CO 3 Heat Storage Materials," Energies, MDPI, vol. 15(19), pages 1-13, September.
    2. Jingyu Zhong & Jing Ding & Jianfeng Lu & Xiaolan Wei & Weilong Wang, 2022. "Thermal Stability Calculation and Experimental Investigation of Common Binary Chloride Molten Salts Applied in Concentrating Solar Power Plants," Energies, MDPI, vol. 15(7), pages 1-31, March.
    3. Chen, Cheng & Volpe, Roberto & Jiang, Xi, 2021. "A molecular investigation on lignin thermochemical conversion and carbonaceous organics deposition induced catalyst deactivation," Applied Energy, Elsevier, vol. 302(C).
    4. Liu, Yilin & Cui, Xin & Yan, Weichao & Wang, Jiawei & Su, Jincai & Jin, Liwen, 2022. "A molecular level based parametric study of transport behavior in different polymer composite membranes for water vapor separation," Applied Energy, Elsevier, vol. 326(C).
    5. Nie, Xianhua & Du, Zhenyu & Zhao, Li & Deng, Shuai & Zhang, Yue, 2019. "Molecular dynamics study on transport properties of supercritical working fluids: Literature review and case study," Applied Energy, Elsevier, vol. 250(C), pages 63-80.
    6. Wu, Chunlei & Wang, Qing & Wang, Xinmin & Sun, Shipeng & Bai, Jingru & Cui, Da & Pan, Shuo & Sheng, Hongyu, 2024. "Effect of Al2O3 nanoparticle dispersion on the thermal properties of a eutectic salt for solar power applications: Experimental and molecular simulation studies," Energy, Elsevier, vol. 288(C).
    7. Ruan, Zhao-Hui & Gao, Peng & Yuan, Yuan & Tan, He-Ping, 2022. "Theoretical estimation of temperature-dependent radiation properties of molten solar salt using molecular dynamics and first principles," Energy, Elsevier, vol. 246(C).
    8. Luo, Qingyang & Liu, Xianglei & Xu, Qiao & Tian, Yang & Yao, Haichen & Wang, Jianguo & Lv, Shushan & Dang, Chunzhuo & Xuan, Yimin, 2023. "Ceramic nanoparticles enhancement of latent heat thermal energy storage properties for LiNO3/NaCl: Evaluation from material to system level," Applied Energy, Elsevier, vol. 331(C).
    9. Tian, Heqing & Kou, Zhaoyang & Pang, Xinchang & Yu, Yinsheng, 2023. "Molecular dynamics simulation on thermophysical properties and local structure of ternary chloride salt for thermal energy storage and transfer system," Energy, Elsevier, vol. 284(C).
    10. Pan, Gechuanqi & Wei, Xiaolan & Yu, Chao & Lu, Yutong & Li, Jiang & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2020. "Thermal performance of a binary carbonate molten eutectic salt for high-temperature energy storage applications," Applied Energy, Elsevier, vol. 262(C).
    11. Luo, Qingyang & Liu, Xianglei & Wang, Haolei & Xu, Qiao & Tian, Yang & Liang, Ting & Liu, Qibin & Liu, Zhan & Yang, Xiaohu & Xuan, Yimin & Li, Yongliang & Ding, Yulong, 2022. "Synergetic enhancement of heat storage density and heat transport ability of phase change materials inlaid in 3D hierarchical ceramics," Applied Energy, Elsevier, vol. 306(PA).
    12. Ni, Haiou & Wu, Jie & Sun, Ze & Lu, Guimin & Yu, Jianguo, 2019. "Molecular simulation of the structure and physical properties of alkali nitrate salts for thermal energy storage," Renewable Energy, Elsevier, vol. 136(C), pages 955-967.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    2. Hao, Wenbin & Mi, Yongli, 2016. "Evaluation of waste paper as a source of carbon fuel for hybrid direct carbon fuel cells," Energy, Elsevier, vol. 107(C), pages 122-130.
    3. Eom, Seongyong & Ahn, Seongyool & Kang, Kijoong & Choi, Gyungmin, 2017. "Correlations between electrochemical resistances and surface properties of acid-treated fuel in coal fuel cells," Energy, Elsevier, vol. 140(P1), pages 885-892.
    4. Duan, Nan-Qi & Cao, Yong & Hua, Bin & Chi, Bo & Pu, Jian & Luo, Jingli & Jian, Li, 2016. "Tubular direct carbon solid oxide fuel cells with molten antimony anode and refueling feasibility," Energy, Elsevier, vol. 95(C), pages 274-278.
    5. Qu, Jifa & Wang, Wei & Chen, Yubo & Wang, Feng & Ran, Ran & Shao, Zongping, 2015. "Ethylene glycol as a new sustainable fuel for solid oxide fuel cells with conventional nickel-based anodes," Applied Energy, Elsevier, vol. 148(C), pages 1-9.
    6. Cai, Weizi & Zhou, Qian & Xie, Yongmin & Liu, Jiang & Long, Guohui & Cheng, Shuang & Liu, Meilin, 2016. "A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst," Applied Energy, Elsevier, vol. 179(C), pages 1232-1241.
    7. Qu, Jifa & Wang, Wei & Chen, Yubo & Deng, Xiang & Shao, Zongping, 2016. "Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures," Applied Energy, Elsevier, vol. 164(C), pages 563-571.
    8. Pan, Gechuanqi & Wei, Xiaolan & Yu, Chao & Lu, Yutong & Li, Jiang & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2020. "Thermal performance of a binary carbonate molten eutectic salt for high-temperature energy storage applications," Applied Energy, Elsevier, vol. 262(C).
    9. Hao, Wenbin & Ma, Hongyan & Sun, Guoxing & Li, Zongjin, 2019. "Magnesia phosphate cement composite bipolar plates for passive type direct methanol fuel cells," Energy, Elsevier, vol. 168(C), pages 80-87.
    10. Duan, Nan-Qi & Tan, Yuan & Yan, Dong & Jia, Lichao & Chi, Bo & Pu, Jian & Li, Jian, 2016. "Biomass carbon fueled tubular solid oxide fuel cells with molten antimony anode," Applied Energy, Elsevier, vol. 165(C), pages 983-989.
    11. Andrzej Kacprzak & Renata Włodarczyk, 2023. "Utilization of Organic Waste in a Direct Carbon Fuel Cell for Sustainable Electricity Generation," Energies, MDPI, vol. 16(21), pages 1-19, October.
    12. Wu, Hao & Xiao, Jie & Zeng, Xiaoyuan & Li, Xue & Yang, Jing & Zou, Yuling & Liu, Sudongfang & Dong, Peng & Zhang, Yingjie & Liu, Jiang, 2019. "A high performance direct carbon solid oxide fuel cell – A green pathway for brown coal utilization," Applied Energy, Elsevier, vol. 248(C), pages 679-687.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:227:y:2018:i:c:p:555-563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.