IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v147y2015icp67-73.html
   My bibliography  Save this article

Combination of dry dark fermentation and mechanical pretreatment for lignocellulosic deconstruction: An innovative strategy for biofuels and volatile fatty acids recovery

Author

Listed:
  • Motte, Jean-Charles
  • Sambusiti, Cecilia
  • Dumas, Claire
  • Barakat, Abdellatif

Abstract

In the present study, the feasibility of combining dry dark fermentation and mechanical pretreatment of wheat straw was studied in order to improve substrate valorization, save energy input, decrease the environmental impact and diversify biofuels and volatile fatty acids production. To this end, dark fermentation of wheat straw was performed at 55°C and 35°C under solid-state conditions (23% of total solid content) and it was considered as a biological pretreatment. Both biologically treated and raw straws were reduced at four particles size to cover the range of fine (50

Suggested Citation

  • Motte, Jean-Charles & Sambusiti, Cecilia & Dumas, Claire & Barakat, Abdellatif, 2015. "Combination of dry dark fermentation and mechanical pretreatment for lignocellulosic deconstruction: An innovative strategy for biofuels and volatile fatty acids recovery," Applied Energy, Elsevier, vol. 147(C), pages 67-73.
  • Handle: RePEc:eee:appene:v:147:y:2015:i:c:p:67-73
    DOI: 10.1016/j.apenergy.2015.02.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915002196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.02.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barakat, Abdellatif & Chuetor, Santi & Monlau, Florian & Solhy, Abderrahim & Rouau, Xavier, 2014. "Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: Impact on energy and yield of the enzymatic hydrolysis," Applied Energy, Elsevier, vol. 113(C), pages 97-105.
    2. Sambusiti, C. & Monlau, F. & Ficara, E. & Carrère, H. & Malpei, F., 2013. "A comparison of different pre-treatments to increase methane production from two agricultural substrates," Applied Energy, Elsevier, vol. 104(C), pages 62-70.
    3. Barakat, Abdellatif & Monlau, Florian & Solhy, Abderrahim & Carrere, Hélène, 2015. "Mechanical dissociation and fragmentation of lignocellulosic biomass: Effect of initial moisture, biochemical and structural proprieties on energy requirement," Applied Energy, Elsevier, vol. 142(C), pages 240-246.
    4. Abubaker, J. & Risberg, K. & Pell, M., 2012. "Biogas residues as fertilisers – Effects on wheat growth and soil microbial activities," Applied Energy, Elsevier, vol. 99(C), pages 126-134.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriele Mancini & Stefano Papirio & Piet N. L. Lens & Giovanni Esposito, 2019. "A Preliminary Study of the Effect of Bioavailable Fe and Co on the Anaerobic Digestion of Rice Straw," Energies, MDPI, vol. 12(4), pages 1-11, February.
    2. Fang, Wei & Zhang, Panyue & Zhang, Xuedong & Zhu, Xuefeng & van Lier, Jules B. & Spanjers, Henri, 2018. "White rot fungi pretreatment to advance volatile fatty acid production from solid-state fermentation of solid digestate: Efficiency and mechanisms," Energy, Elsevier, vol. 162(C), pages 534-541.
    3. Vincenzo Luongo & Grazia Policastro & Anish Ghimire & Francesco Pirozzi & Massimiliano Fabbricino, 2019. "Repeated-Batch Fermentation of Cheese Whey for Semi-Continuous Lactic Acid Production Using Mixed Cultures at Uncontrolled pH," Sustainability, MDPI, vol. 11(12), pages 1-12, June.
    4. Karim, Ahasanul & Islam, M. Amirul & Mishra, Puranjan & Yousuf, Abu & Faizal, Che Ku Mohammad & Khan, Md. Maksudur Rahman, 2021. "Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Chalima, Angelina & Hatzidaki, Angeliki & Karnaouri, Anthi & Topakas, Evangelos, 2019. "Integration of a dark fermentation effluent in a microalgal-based biorefinery for the production of high-added value omega-3 fatty acids," Applied Energy, Elsevier, vol. 241(C), pages 130-138.
    6. Elena Butnaru & Mihai Brebu, 2022. "The Thermochemical Conversion of Forestry Residues from Silver Fir ( Abies alba Mill.) by Torrefaction and Pyrolysis," Energies, MDPI, vol. 15(10), pages 1-20, May.
    7. Du, Jiliang & Chen, Le & Li, Jianan & Zuo, Ranan & Yang, Xiushan & Chen, Hongzhang & Zhuang, Xinshu & Tian, Shen, 2018. "High-solids ethanol fermentation with single-stage methane anaerobic digestion for maximizing bioenergy conversion from a C4 grass (Pennisetum purpereum)," Applied Energy, Elsevier, vol. 215(C), pages 437-443.
    8. Li, Lin & Ge, Yuntian, 2017. "System-level cost evaluation for economic viability of cellulosic biofuel manufacturing," Applied Energy, Elsevier, vol. 203(C), pages 711-722.
    9. Xia, Ao & Cheng, Jun & Song, Wenlu & Su, Huibo & Ding, Lingkan & Lin, Richen & Lu, Hongxiang & Liu, Jianzhong & Zhou, Junhu & Cen, Kefa, 2015. "Fermentative hydrogen production using algal biomass as feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 209-230.
    10. Sekoai, Patrick T. & Ghimire, Anish & Ezeokoli, Obinna T. & Rao, Subramanya & Ngan, Wing Y. & Habimana, Olivier & Yao, Yuan & Yang, Pu & Yiu Fung, Aster Hei & Yoro, Kelvin O. & Daramola, Michael O. & , 2021. "Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monlau, F. & Sambusiti, C. & Antoniou, N. & Barakat, A. & Zabaniotou, A., 2015. "A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process," Applied Energy, Elsevier, vol. 148(C), pages 32-38.
    2. Li, Wei & Guo, Jianbin & Cheng, Huicai & Wang, Wei & Dong, Renjie, 2017. "Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: Viability, performance and microbial community evaluation," Applied Energy, Elsevier, vol. 189(C), pages 613-622.
    3. Chen, Xiaohua & Zhang, YaLei & Gu, Yu & Liu, Zhanguang & Shen, Zheng & Chu, Huaqiang & Zhou, Xuefei, 2014. "Enhancing methane production from rice straw by extrusion pretreatment," Applied Energy, Elsevier, vol. 122(C), pages 34-41.
    4. Rouches, E. & Herpoël-Gimbert, I. & Steyer, J.P. & Carrere, H., 2016. "Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 179-198.
    5. Meneses-Quelal Orlando & Velázquez-Martí Borja, 2020. "Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review," Energies, MDPI, vol. 13(14), pages 1-28, July.
    6. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    7. Jan Moestedt & Sören Nilsson Påledal & Anna Schnürer & Erik Nordell, 2013. "Biogas Production from Thin Stillage on an Industrial Scale—Experience and Optimisation," Energies, MDPI, vol. 6(11), pages 1-14, October.
    8. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    9. Kerstin Nielsen & Christina-Luise Roß & Marieke Hoffmann & Andreas Muskolus & Frank Ellmer & Timo Kautz, 2020. "The Chemical Composition of Biogas Digestates Determines Their Effect on Soil Microbial Activity," Agriculture, MDPI, vol. 10(6), pages 1-20, June.
    10. Al Afif, Rafat & Linke, Bernd, 2019. "Biogas production from three-phase olive mill solid waste in lab-scale continuously stirred tank reactor," Energy, Elsevier, vol. 171(C), pages 1046-1052.
    11. Ji, Qinghua & Jiang, Haonan & Yu, Xiaojie & Yagoub, Abu El-Gasim A. & Zhou, Cunshan & Chen, Li, 2020. "Efficient and environmentally-friendly dehydration of fructose and treatments of bagasse under the supercritical CO2 system," Renewable Energy, Elsevier, vol. 162(C), pages 1-12.
    12. Franco Curadelli & Marcelo Alberto & Ernesto Martín Uliarte & Mariana Combina & Iván Funes-Pinter, 2023. "Meta-Analysis of Yields of Crops Fertilized with Compost Tea and Anaerobic Digestate," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    13. Tae Hoon Kim & Hyun Kwak & Tae Hyun Kim & Kyeong Keun Oh, 2020. "Extraction Behaviors of Lignin and Hemicellulose-Derived Sugars During Organosolv Fractionation of Agricultural Residues Using a Bench-Scale Ball Milling Reactor," Energies, MDPI, vol. 13(2), pages 1-15, January.
    14. Christine Peyrelasse & Abdellatif Barakat & Camille Lagnet & Prasad Kaparaju & Florian Monlau, 2021. "Anaerobic Digestion of Wastewater Sludge and Alkaline-Pretreated Wheat Straw at Semi-Continuous Pilot Scale: Performances and Energy Assessment," Energies, MDPI, vol. 14(17), pages 1-15, August.
    15. Wenyan Chen & Qiang Cai & Yuan Zhao & Guojuan Zheng & Yuting Liang, 2014. "Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish," IJERPH, MDPI, vol. 11(7), pages 1-15, July.
    16. Jacek Pranagal & Sławomir Ligęza & Halina Smal & Joanna Gmitrowicz-Iwan, 2023. "Effects of Waste Application (Carboniferous Rock and Post-Fermentation Sludge) on Soil Quality," Land, MDPI, vol. 12(2), pages 1-20, February.
    17. Dell’Omo, Pier Paolo & Spena, Vincenzo Andrea, 2020. "Mechanical pretreatment of lignocellulosic biomass to improve biogas production: Comparison of results for giant reed and wheat straw," Energy, Elsevier, vol. 203(C).
    18. Krzysztof Józef Jankowski & Bogdan Dubis, 2024. "Jerusalem Artichoke: Nitrogen Fertilization Strategy and Energy Balance in the Production Technology of Aerial Biomass," Energies, MDPI, vol. 17(20), pages 1-23, October.
    19. Sambusiti, C. & Ficara, E. & Malpei, F. & Steyer, J.P. & Carrère, H., 2013. "Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum," Energy, Elsevier, vol. 55(C), pages 449-456.
    20. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:147:y:2015:i:c:p:67-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.