IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i2p488-d1070338.html
   My bibliography  Save this article

Effects of Waste Application (Carboniferous Rock and Post-Fermentation Sludge) on Soil Quality

Author

Listed:
  • Jacek Pranagal

    (Institute of Soil Science, Environment Engineering and Management, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland)

  • Sławomir Ligęza

    (Institute of Soil Science, Environment Engineering and Management, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland)

  • Halina Smal

    (Institute of Soil Science, Environment Engineering and Management, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland)

  • Joanna Gmitrowicz-Iwan

    (Institute of Soil Science, Environment Engineering and Management, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland)

Abstract

This paper shows the changes in soil properties in the fourth year after the application of two kinds of environmentally burdensome wastes. One of the wastes was mineral—carboniferous rock from a coal mine, and the other one was organic—post-fermentation sludge from an agricultural biogas plant. The wastes were applied once to a soil of poor quality—a Podzol. The hypothesis to be verified was that one-time application of waste carboniferous rock and/or post-fermentation sludge to a soil has a beneficial effect on the physical status of the soil, and the changes in the soil properties have a permanent character. Also, based on the experiment results, we suggested how these types of waste should be applied to soil. For that purpose, an assessment was performed of the durability, range, and character of changes in soil properties, inter alia: soil texture (PSD), total organic carbon content (TOC), particle density (PD), bulk density (BD), total porosity (TP), air capacity (FAC), air permeability (FAP), sampling moisture (SM), field water capacity (FC), available water (AWC), unavailable water (UWC), and hydraulic conductivity (Ks). Some soil properties have been improved by the use of post-fermentation sludge and the combined application of the two wastes. These were the following soil properties: PSD, TOC, BD, TP, and SM. However, changes to the soil air-water properties (FAC, FAP, FC, AWC, UWC, and Ks) were unfavorable. The effect of the waste’s application was permanent, as differences in soil properties were still visible in the fourth year after their addition. The observations made in the course of the experiment indicate that natural utilization of wastes requires a lot of consideration and should be focused on keeping the balance in the relations between the environmental functions of the soil.

Suggested Citation

  • Jacek Pranagal & Sławomir Ligęza & Halina Smal & Joanna Gmitrowicz-Iwan, 2023. "Effects of Waste Application (Carboniferous Rock and Post-Fermentation Sludge) on Soil Quality," Land, MDPI, vol. 12(2), pages 1-20, February.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:488-:d:1070338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/2/488/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/2/488/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abubaker, J. & Risberg, K. & Pell, M., 2012. "Biogas residues as fertilisers – Effects on wheat growth and soil microbial activities," Applied Energy, Elsevier, vol. 99(C), pages 126-134.
    2. Rattan Lal, 2015. "Restoring Soil Quality to Mitigate Soil Degradation," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad A. Al-Ghamdi & Yilma Tadesse & Nuru Adgaba & Abdulaziz G. Alghamdi, 2021. "Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    2. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    3. Jan Moestedt & Sören Nilsson Påledal & Anna Schnürer & Erik Nordell, 2013. "Biogas Production from Thin Stillage on an Industrial Scale—Experience and Optimisation," Energies, MDPI, vol. 6(11), pages 1-14, October.
    4. Alvyra Slepetiene & Mykola Kochiieru & Linas Jurgutis & Audrone Mankeviciene & Aida Skersiene & Olgirda Belova, 2022. "The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania," Land, MDPI, vol. 11(1), pages 1-17, January.
    5. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    6. Kerstin Nielsen & Christina-Luise Roß & Marieke Hoffmann & Andreas Muskolus & Frank Ellmer & Timo Kautz, 2020. "The Chemical Composition of Biogas Digestates Determines Their Effect on Soil Microbial Activity," Agriculture, MDPI, vol. 10(6), pages 1-20, June.
    7. Ying-Tzy Jou & Elmi Junita Tarigan & Cahyo Prayogo & Chesly Kit Kobua & Yu-Ting Weng & Yu-Min Wang, 2022. "Effects of Sphingobium yanoikuyae SJTF8 on Rice ( Oryza sativa ) Seed Germination and Root Development," Agriculture, MDPI, vol. 12(11), pages 1-15, November.
    8. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    9. Al Afif, Rafat & Linke, Bernd, 2019. "Biogas production from three-phase olive mill solid waste in lab-scale continuously stirred tank reactor," Energy, Elsevier, vol. 171(C), pages 1046-1052.
    10. Jiani Ma & Chao Zhang & Wenju Yun & Yahui Lv & Wanling Chen & Dehai Zhu, 2020. "The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    11. Grażyna Żukowska & Magdalena Myszura-Dymek & Szymon Roszkowski & Magdalena Olkiewicz, 2023. "Selected Properties of Soil-like Substrates Made from Mine Coal Waste and Their Effect on Plant Yields," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    12. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    13. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    14. Sung Kyu Kim & Fiona Marshall & Neil M. Dawson, 2022. "Revisiting Rwanda’s agricultural intensification policy: benefits of embracing farmer heterogeneity and crop-livestock integration strategies," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 637-656, June.
    15. Franco Curadelli & Marcelo Alberto & Ernesto Martín Uliarte & Mariana Combina & Iván Funes-Pinter, 2023. "Meta-Analysis of Yields of Crops Fertilized with Compost Tea and Anaerobic Digestate," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    16. Muhammad Faisal Saleem & Abdul Ghaffar & Muhammad Habib ur Rahman & Muhammad Imran & Rashid Iqbal & Walid Soufan & Subhan Danish & Rahul Datta & Karthika Rajendran & Ayman EL Sabagh, 2022. "Effect of Short-Term Zero Tillage and Legume Intercrops on Soil Quality, Agronomic and Physiological Aspects of Cotton under Arid Climate," Land, MDPI, vol. 11(2), pages 1-15, February.
    17. Wenyan Chen & Qiang Cai & Yuan Zhao & Guojuan Zheng & Yuting Liang, 2014. "Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish," IJERPH, MDPI, vol. 11(7), pages 1-15, July.
    18. Ziauddin Safari & Sayed Tamim Rahimi & Kamal Ahmed & Ahmad Sharafati & Ghaith Falah Ziarh & Shamsuddin Shahid & Tarmizi Ismail & Nadhir Al-Ansari & Eun-Sung Chung & Xiaojun Wang, 2021. "Estimation of Spatial and Seasonal Variability of Soil Erosion in a Cold Arid River Basin in Hindu Kush Mountainous Region Using Remote Sensing," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
    19. Krzysztof Józef Jankowski & Bogdan Dubis, 2024. "Jerusalem Artichoke: Nitrogen Fertilization Strategy and Energy Balance in the Production Technology of Aerial Biomass," Energies, MDPI, vol. 17(20), pages 1-23, October.
    20. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:488-:d:1070338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.