IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i20p5202-d1502041.html
   My bibliography  Save this article

Jerusalem Artichoke: Nitrogen Fertilization Strategy and Energy Balance in the Production Technology of Aerial Biomass

Author

Listed:
  • Krzysztof Józef Jankowski

    (Department of Agrotechnology and Agribusiness, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Oczapowskiego 8, 10-719 Olsztyn, Poland)

  • Bogdan Dubis

    (Department of Agrotechnology and Agribusiness, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Oczapowskiego 8, 10-719 Olsztyn, Poland)

Abstract

Jerusalem artichoke ( Helianthus tuberosus L.) is a plant with considerable potential for energy generation due to its rapid growth, high biomass yield, and resistance to environmental stresses. The aim of this study was to determine the influence of the nitrogen fertilization strategy on the yield and energy balance in the production technology of Jerusalem artichoke (JA) in a perennial cropping system. The article presents the results of a three-year experiment which was conducted in Poland to determine the effect of different N rates (0, 50, 75, and 100 kg ha −1 ) supplied with mineral fertilizers and liquid digestate on the energy balance in the production of JA aerial biomass. The experiment had a randomized block design with three replications. The demand for energy in JA cultivation reached 16.2–26.3 (year 1) and 2.9–14.6 GJ ha −1 (years 2 and 3). Energy inputs in the cultivation technology were reduced by 17–19% (year 1) and 35–47% (years 2 and 3) when mineral fertilizers were replaced with digestate. Jerusalem artichoke yields were lowest in the technology without fertilization (12.5 Mg ha −1 DM). Dry matter yield increased significantly (by 43–55%) after the application of 75 kg N ha −1 , regardless of fertilizer type. The energy output of biomass peaked (230.1 GJ ha −1 ) in response to a mineral fertilizer rate of 75 kg N ha −1 . In turn, the highest energy gain (218.5 GJ ha −1 ) was noted after the application of digestate at a rate equivalent to 75 kg N ha –1 . The energy efficiency ratio was highest in the technology without fertilization (20.1) and after the application of digestate at a rate equivalent to 75 kg N ha −1 (19.7). Regardless of the factors that limit agricultural production, the energy balance of JA biomass production was most favorable when JA was fertilized with digestate at a rate equivalent to 75 kg N ha −1 . The results of this study may pave the way for future research on novel agronomic strategies for sustainable bioenergy production, including nutrient recycling.

Suggested Citation

  • Krzysztof Józef Jankowski & Bogdan Dubis, 2024. "Jerusalem Artichoke: Nitrogen Fertilization Strategy and Energy Balance in the Production Technology of Aerial Biomass," Energies, MDPI, vol. 17(20), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5202-:d:1502041
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/20/5202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/20/5202/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barbara Dybek & Dorota Anders & Jakub T. Hołaj-Krzak & Łukasz Hałasa & Grzegorz Maj & Magdalena Kapłan & Kamila Klimek & Gabriel Filipczak & Grzegorz Wałowski, 2023. "Assessment of the Prospects of Polish Non-Food Energy Agriculture in the Context of a Renewable Energy Source," Energies, MDPI, vol. 16(8), pages 1-42, April.
    2. Jankowski, Krzysztof Józef & Dubis, Bogdan & Kozak, Marcin, 2021. "Sewage sludge and the energy balance of Jerusalem artichoke production - A case study in north-eastern Poland," Energy, Elsevier, vol. 236(C).
    3. T. Lošák & J. Hlušek & T. Válka & J. Elbl & T. Vítěz & H. Bělíková & E. Von Bennewitz, 2016. "The effect of fertilisation with digestate on kohlrabi yields and quality," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(6), pages 274-278.
    4. L. Kolář & S. Kužel & J. Peterka & J. Borová-Batt, 2010. "Agrochemical value of the liquid phase of wastes from fermentem during biogas production," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 56(1), pages 23-27.
    5. Abubaker, J. & Risberg, K. & Pell, M., 2012. "Biogas residues as fertilisers – Effects on wheat growth and soil microbial activities," Applied Energy, Elsevier, vol. 99(C), pages 126-134.
    6. Jankowski, Krzysztof Józef & Kołodziej, Barbara & Dubis, Bogdan & Sugier, Danuta & Antonkiewicz, Jacek & Szatkowski, Artur, 2023. "The effect of sewage sludge on the energy balance of cup plant biomass production. A six-year field experiment in Poland," Energy, Elsevier, vol. 276(C).
    7. L. Kolář & S. Kužel & J. Peterka & P. Štindl & V. Plát, 2008. "Agrochemical value of organic matter of fermenter wastes in biogas production," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 54(8), pages 321-328.
    8. Muhammad Asyraf Azni & Rasyikah Md Khalid & Umi Azmah Hasran & Siti Kartom Kamarudin, 2023. "Review of the Effects of Fossil Fuels and the Need for a Hydrogen Fuel Cell Policy in Malaysia," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    9. Dubis, Bogdan & Jankowski, Krzysztof Józef & Załuski, Dariusz & Sokólski, Mateusz, 2020. "The effect of sewage sludge fertilization on the biomass yield of giant miscanthus and the energy balance of the production process," Energy, Elsevier, vol. 206(C).
    10. T. Šimon & E. Kunzová & M. Friedlová, 2015. "The effect of digestate, cattle slurry and mineral fertilization on the winter wheat yield and soil quality parameters," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 61(11), pages 522-527.
    11. Kim, Seonghun & Kim, Chul Ho, 2014. "Evaluation of whole Jerusalem artichoke (Helianthus tuberosus L.) for consolidated bioprocessing ethanol production," Renewable Energy, Elsevier, vol. 65(C), pages 83-91.
    12. Jankowski, Krzysztof Józef & Dubis, Bogdan & Sokólski, Mateusz Mikołaj & Załuski, Dariusz & Bórawski, Piotr & Szempliński, Władysław, 2019. "Biomass yield and energy balance of Virginia fanpetals in different production technologies in north-eastern Poland," Energy, Elsevier, vol. 185(C), pages 612-623.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stolarski, Mariusz J. & Krzyżaniak, Michał & Olba-Zięty, Ewelina, 2024. "Energy efficiency of Silphium perfoliatum and Helianthus salicifolius biomass production," Energy, Elsevier, vol. 307(C).
    2. Jankowski, Krzysztof Józef & Kołodziej, Barbara & Dubis, Bogdan & Sugier, Danuta & Antonkiewicz, Jacek & Szatkowski, Artur, 2023. "The effect of sewage sludge on the energy balance of cup plant biomass production. A six-year field experiment in Poland," Energy, Elsevier, vol. 276(C).
    3. Krzysztof Józef Jankowski & Anna Nogalska, 2022. "Meat and Bone Meal and the Energy Balance of Winter Oilseed Rape—A Case Study in North-Eastern Poland," Energies, MDPI, vol. 15(11), pages 1-18, May.
    4. Jankowski, Krzysztof Józef & Sokólski, Mateusz & Załuski, Dariusz, 2023. "Winter oilseed rape: Agronomic management in different tillage systems and energy balance," Energy, Elsevier, vol. 277(C).
    5. Jankowski, Krzysztof Józef & Dubis, Bogdan & Kozak, Marcin, 2021. "Sewage sludge and the energy balance of Jerusalem artichoke production - A case study in north-eastern Poland," Energy, Elsevier, vol. 236(C).
    6. T. Lošák & J. Hlušek & T. Válka & J. Elbl & T. Vítěz & H. Bělíková & E. Von Bennewitz, 2016. "The effect of fertilisation with digestate on kohlrabi yields and quality," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(6), pages 274-278.
    7. Maciej Kuboń & Magdalena Tymińska & Zbigniew Skibko & Andrzej Borusiewicz & Jacek Filipkowski & Sylwester Tabor & Stanisław Derehajło, 2023. "Effect of Fertilisation Regime on Maise Yields," Sustainability, MDPI, vol. 15(22), pages 1-14, November.
    8. Stolarski, Mariusz J. & Peni, Dumitru & Dębowski, Marcin, 2022. "Biogas potential of cup plant and willow-leaf sunflower biomass," Energy, Elsevier, vol. 255(C).
    9. Jan Moestedt & Sören Nilsson Påledal & Anna Schnürer & Erik Nordell, 2013. "Biogas Production from Thin Stillage on an Industrial Scale—Experience and Optimisation," Energies, MDPI, vol. 6(11), pages 1-14, October.
    10. Elżbieta Malinowska & Beata Wiśniewska-Kadżajan, 2023. "The Effects of Different Doses of Organic Waste on Prairie Cordgrass ( Spartina Pectinata L.) Yield and Selected Energy Parameters," Energies, MDPI, vol. 16(15), pages 1-11, July.
    11. Kerstin Nielsen & Christina-Luise Roß & Marieke Hoffmann & Andreas Muskolus & Frank Ellmer & Timo Kautz, 2020. "The Chemical Composition of Biogas Digestates Determines Their Effect on Soil Microbial Activity," Agriculture, MDPI, vol. 10(6), pages 1-20, June.
    12. Al Afif, Rafat & Linke, Bernd, 2019. "Biogas production from three-phase olive mill solid waste in lab-scale continuously stirred tank reactor," Energy, Elsevier, vol. 171(C), pages 1046-1052.
    13. Hegazy Rezk & Mokhtar Aly & Rania M. Ghoniem, 2023. "Robust Fuzzy Logic MPPT Using Gradient-Based Optimization for PEMFC Power System," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    14. Władysław Szempliński & Bogdan Dubis & Krzysztof Michał Lachutta & Krzysztof Józef Jankowski, 2021. "Energy Optimization in Different Production Technologies of Winter Triticale Grain," Energies, MDPI, vol. 14(4), pages 1-12, February.
    15. Xu Liang & Huifang Kang & Rui Zeng & Yue Pang & Yun Yang & Yunlu Qiu & Yuanxu Tao & Jun Shen, 2024. "Impact of the Structural Parameters on the Performance of a Regenerative-Type Hydrogen Recirculation Blower for Vehicular Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 16(5), pages 1-28, February.
    16. Franco Curadelli & Marcelo Alberto & Ernesto Martín Uliarte & Mariana Combina & Iván Funes-Pinter, 2023. "Meta-Analysis of Yields of Crops Fertilized with Compost Tea and Anaerobic Digestate," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    17. Kwiatkowski, Jacek & Graban, Łukasz & Stolarski, Mariusz J., 2023. "The energy efficiency of Virginia fanpetals biomass production for solid biofuel," Energy, Elsevier, vol. 264(C).
    18. Abdessamad Intidam & Hassan El Fadil & Halima Housny & Zakariae El Idrissi & Abdellah Lassioui & Soukaina Nady & Abdeslam Jabal Laafou, 2023. "Development and Experimental Implementation of Optimized PI-ANFIS Controller for Speed Control of a Brushless DC Motor in Fuel Cell Electric Vehicles," Energies, MDPI, vol. 16(11), pages 1-23, May.
    19. Wenyan Chen & Qiang Cai & Yuan Zhao & Guojuan Zheng & Yuting Liang, 2014. "Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish," IJERPH, MDPI, vol. 11(7), pages 1-15, July.
    20. Jacek Pranagal & Sławomir Ligęza & Halina Smal & Joanna Gmitrowicz-Iwan, 2023. "Effects of Waste Application (Carboniferous Rock and Post-Fermentation Sludge) on Soil Quality," Land, MDPI, vol. 12(2), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5202-:d:1502041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.