Integration of a dark fermentation effluent in a microalgal-based biorefinery for the production of high-added value omega-3 fatty acids
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.03.058
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ghimire, Anish & Frunzo, Luigi & Pirozzi, Francesco & Trably, Eric & Escudie, Renaud & Lens, Piet N.L. & Esposito, Giovanni, 2015. "A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products," Applied Energy, Elsevier, vol. 144(C), pages 73-95.
- Wang, Jianlong & Yin, Yanan, 2018. "Fermentative hydrogen production using various biomass-based materials as feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 284-306.
- Sun, Chihe & Xia, Ao & Liao, Qiang & Fu, Qian & Huang, Yun & Zhu, Xun & Wei, Pengfei & Lin, Richen & Murphy, Jerry D., 2018. "Improving production of volatile fatty acids and hydrogen from microalgae and rice residue: Effects of physicochemical characteristics and mix ratios," Applied Energy, Elsevier, vol. 230(C), pages 1082-1092.
- Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
- Motte, Jean-Charles & Sambusiti, Cecilia & Dumas, Claire & Barakat, Abdellatif, 2015. "Combination of dry dark fermentation and mechanical pretreatment for lignocellulosic deconstruction: An innovative strategy for biofuels and volatile fatty acids recovery," Applied Energy, Elsevier, vol. 147(C), pages 67-73.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Qi, Nan & Zhao, Xin & Hu, Xiaomin & Wang, Jian & Yang, Chunlu, 2023. "Enhancing biohydrogen production by peanut shell carrier assisted fermentation at different hydraulic retention time," Renewable Energy, Elsevier, vol. 219(P2).
- Chalima, Angelina & Taxeidis, George & Topakas, Evangelos, 2020. "Optimization of the production of docosahexaenoic fatty acid by the heterotrophic microalga Crypthecodinium cohnii utilizing a dark fermentation effluent," Renewable Energy, Elsevier, vol. 152(C), pages 102-109.
- Laura Oliver & Thomas Dietrich & Izaskun Marañón & Maria Carmen Villarán & Ramón J. Barrio, 2020. "Producing Omega-3 Polyunsaturated Fatty Acids: A Review of Sustainable Sources and Future Trends for the EPA and DHA Market," Resources, MDPI, vol. 9(12), pages 1-15, December.
- Sekoai, Patrick T. & Ghimire, Anish & Ezeokoli, Obinna T. & Rao, Subramanya & Ngan, Wing Y. & Habimana, Olivier & Yao, Yuan & Yang, Pu & Yiu Fung, Aster Hei & Yoro, Kelvin O. & Daramola, Michael O. & , 2021. "Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sun, Chihe & Liao, Qiang & Xia, Ao & Fu, Qian & Huang, Yun & Zhu, Xianqing & Zhu, Xun & Wang, Zhengxin, 2020. "Degradation and transformation of furfural derivatives from hydrothermal pre-treated algae and lignocellulosic biomass during hydrogen fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Wang, Yangyang & Liu, Yangyang & Xu, Zaifeng & Yin, Kexin & Zhou, Yaru & Zhang, Jifu & Cui, Peizhe & Ma, Shinan & Wang, Yinglong & Zhu, Zhaoyou, 2024. "A review on renewable energy-based chemical engineering design and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
- Anita Šalić & Bruno Zelić, 2022. "A Game Changer: Microfluidic Technology for Enhancing Biohydrogen Production—Small Size for Great Performance," Energies, MDPI, vol. 15(19), pages 1-22, September.
- Shuang Liu & Wenzhe Li & Guoxiang Zheng & Haiyan Yang & Longhai Li, 2020. "Optimization of Cattle Manure and Food Waste Co-Digestion for Biohydrogen Production in a Mesophilic Semi-Continuous Process," Energies, MDPI, vol. 13(15), pages 1-13, July.
- Vincenzo Luongo & Grazia Policastro & Anish Ghimire & Francesco Pirozzi & Massimiliano Fabbricino, 2019. "Repeated-Batch Fermentation of Cheese Whey for Semi-Continuous Lactic Acid Production Using Mixed Cultures at Uncontrolled pH," Sustainability, MDPI, vol. 11(12), pages 1-12, June.
- Karolina Kucharska & Patrycja Makoś-Chełstowska & Edyta Słupek & Jacek Gębicki, 2021. "Management of Dark Fermentation Broth via Bio Refining and Photo Fermentation," Energies, MDPI, vol. 14(19), pages 1-16, October.
- Karim, Ahasanul & Islam, M. Amirul & Mishra, Puranjan & Yousuf, Abu & Faizal, Che Ku Mohammad & Khan, Md. Maksudur Rahman, 2021. "Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Machineni, Lakshmi & Deepanraj, B. & Chew, Kit Wayne & Rao, A. Gangagni, 2023. "Biohydrogen production from lignocellulosic feedstock: Abiotic and biotic methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Sekoai, Patrick T. & Ghimire, Anish & Ezeokoli, Obinna T. & Rao, Subramanya & Ngan, Wing Y. & Habimana, Olivier & Yao, Yuan & Yang, Pu & Yiu Fung, Aster Hei & Yoro, Kelvin O. & Daramola, Michael O. & , 2021. "Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Ferraren-De Cagalitan, D.D.T. & Abundo, M.L.S., 2021. "A review of biohydrogen production technology for application towards hydrogen fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Wang, Hui & Zeng, Shufang & Pan, Xiaoli & Liu, Lei & Chen, Yunjie & Tang, Jiawei & Luo, Feng, 2022. "Bioelectrochemically assisting anaerobic digestion enhanced methane production under low-temperature," Renewable Energy, Elsevier, vol. 194(C), pages 1071-1083.
- Jiraprasertwong, Achiraya & Maitriwong, Kiatchai & Chavadej, Sumaeth, 2019. "Production of biogas from cassava wastewater using a three-stage upflow anaerobic sludge blanket (UASB) reactor," Renewable Energy, Elsevier, vol. 130(C), pages 191-205.
- Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
- Vira Hovorukha & Olesia Havryliuk & Galina Gladka & Oleksandr Tashyrev & Antonina Kalinichenko & Monika Sporek & Agnieszka Dołhańczuk-Śródka, 2021. "Hydrogen Dark Fermentation for Degradation of Solid and Liquid Food Waste," Energies, MDPI, vol. 14(7), pages 1-12, March.
- Lopez-Hidalgo, Angel M. & Alvarado-Cuevas, Zazil D. & De Leon-Rodriguez, Antonio, 2018. "Biohydrogen production from mixtures of agro-industrial wastes: Chemometric analysis, optimization and scaling up," Energy, Elsevier, vol. 159(C), pages 32-41.
- Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
- Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
- Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Sun, Chihe & Xia, Ao & Liao, Qiang & Fu, Qian & Huang, Yun & Zhu, Xun & Wei, Pengfei & Lin, Richen & Murphy, Jerry D., 2018. "Improving production of volatile fatty acids and hydrogen from microalgae and rice residue: Effects of physicochemical characteristics and mix ratios," Applied Energy, Elsevier, vol. 230(C), pages 1082-1092.
More about this item
Keywords
Crypthecodinium cohnii; Biorefinery; Volatile fatty acids; Omega-3; Dark fermentation effluent; Docosahexaenoic acid;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:241:y:2019:i:c:p:130-138. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.