IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics0960148124010838.html
   My bibliography  Save this article

Effect of thermo-alkaline pretreatment and substrate inoculum ratio on methane production from dry and semi-dry anaerobic digestion of swine manure

Author

Listed:
  • de Sousa e Silva, Amanda
  • Lima Moraes dos Santos, Amanda
  • Cavalcante Malveira, Isabele Clara
  • Holanda Albano Girão, Bianca
  • Bezerra dos Santos, André

Abstract

Obtaining biogas from biomass, such as swine manure (SM), through anaerobic digestion (AD) is an alternative renewable energy source. In this context, this work aimed to analyze the influence of thermo-alkaline pretreatment (3 % NaOH at 121 °C for 30 min) and the substrate/inoculum ratio (SI) on AD at 10 and 15 % total solids – TS. Moreover, mathematical modeling and molecular biology tools were used to understand better the process and obtain kinetic parameters that assist in the optimization and scaling. The experiments were conducted in batch mode at 37 °C with orbital shaking at 150 rpm for 90 days. SM pretreatment increased cumulative methane yield from 30 to 205 mL/gVS. Furthermore, increasing the SI ratio from 1 to 3 gVSsubstrate/gVSinoculum enhanced this yield from 205 to 268 mL/gVS, although the lag phase increased from 0 to 3.5 days. When increasing the TS content to 15 %, the accumulated methane yield decreased to 136 mL/gVS, and the lag phase increased from 0 to 13 days. Regarding the microbiological evaluation, the genera Actinobacteriota and Chloroflexi were linked to higher methane production, and the dominant genus of archaea was Methanobacterium in almost all conditions tested.

Suggested Citation

  • de Sousa e Silva, Amanda & Lima Moraes dos Santos, Amanda & Cavalcante Malveira, Isabele Clara & Holanda Albano Girão, Bianca & Bezerra dos Santos, André, 2024. "Effect of thermo-alkaline pretreatment and substrate inoculum ratio on methane production from dry and semi-dry anaerobic digestion of swine manure," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010838
    DOI: 10.1016/j.renene.2024.121015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124010838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhongzhong & Hu, Yuansheng & Wang, Shun & Wu, Guangxue & Zhan, Xinmin, 2023. "A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    2. Brémond, Ulysse & de Buyer, Raphaëlle & Steyer, Jean-Philippe & Bernet, Nicolas & Carrere, Hélène, 2018. "Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 583-604.
    3. Bharathiraja, B. & Sudharsana, T. & Jayamuthunagai, J. & Praveenkumar, R. & Chozhavendhan, S. & Iyyappan, J., 2018. "Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 570-582.
    4. Reddy, Aparna & Begum, Sameena & Juntupally, Sudharshan & Anupoju, Gangagni Rao, 2024. "Assessing the impact of alkali pretreatment of rice husk on its composition and product portfolio: Tradeoff between biogas and valuable materials recovery for sustainability," Renewable Energy, Elsevier, vol. 226(C).
    5. Xiao, Youqian & Yang, Hongnan & Zheng, Dan & Liu, Yi & Zhao, Cong & Deng, Liangwei, 2021. "Granular activated carbon alleviates the combined stress of ammonia and adverse temperature conditions during dry anaerobic digestion of swine manure," Renewable Energy, Elsevier, vol. 169(C), pages 451-460.
    6. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    7. Guimarães de Oliveira, Maurício & Marques Mourão, José Marcos & Marques de Oliveira, Ana Katherinne & Bezerra dos Santos, André & Lopes Pereira, Erlon, 2021. "Microaerophilic treatment enhanced organic matter removal and methane production rates during swine wastewater treatment: A long-term engineering evaluation," Renewable Energy, Elsevier, vol. 180(C), pages 691-699.
    8. Sambusiti, C. & Monlau, F. & Ficara, E. & Carrère, H. & Malpei, F., 2013. "A comparison of different pre-treatments to increase methane production from two agricultural substrates," Applied Energy, Elsevier, vol. 104(C), pages 62-70.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elalami, D. & Carrere, H. & Monlau, F. & Abdelouahdi, K. & Oukarroum, A. & Barakat, A., 2019. "Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Alfonso García Álvaro & César Ruiz Palomar & Israel Díaz Villalobos & Daphne Hermosilla & Raúl Muñoz & Ignacio de Godos, 2024. "Energy Integration of Thermal Pretreatment in Anaerobic Digestion of Wheat Straw," Energies, MDPI, vol. 17(9), pages 1-14, April.
    3. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    4. Liang, Yi & Yu, Jiadong & Yao, Zonglu & Sun, Yuxuan & Zhao, Lixin, 2024. "Performance, interaction, and metabolic pathway of novel dry–wet anaerobic digestion for treating high-solid agricultural waste," Energy, Elsevier, vol. 304(C).
    5. Ji, Qinghua & Jiang, Haonan & Yu, Xiaojie & Yagoub, Abu El-Gasim A. & Zhou, Cunshan & Chen, Li, 2020. "Efficient and environmentally-friendly dehydration of fructose and treatments of bagasse under the supercritical CO2 system," Renewable Energy, Elsevier, vol. 162(C), pages 1-12.
    6. Monlau, F. & Sambusiti, C. & Antoniou, N. & Barakat, A. & Zabaniotou, A., 2015. "A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process," Applied Energy, Elsevier, vol. 148(C), pages 32-38.
    7. Georgia-Christina Mitraka & Konstantinos N. Kontogiannopoulos & Maria Batsioula & George F. Banias & Anastasios I. Zouboulis & Panagiotis G. Kougias, 2022. "A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge," Energies, MDPI, vol. 15(18), pages 1-56, September.
    8. Dell’Omo, Pier Paolo & Spena, Vincenzo Andrea, 2020. "Mechanical pretreatment of lignocellulosic biomass to improve biogas production: Comparison of results for giant reed and wheat straw," Energy, Elsevier, vol. 203(C).
    9. Wang, Xuezhi & Lei, Zhongfang & Shimizu, Kazuya & Zhang, Zhenya & Lee, Duu-Jong, 2021. "Recent advancements in nanobubble water technology and its application in energy recovery from organic solid wastes towards a greater environmental friendliness of anaerobic digestion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Bücker, Francielle & Marder, Munique & Peiter, Marina Regina & Lehn, Daniel Neutzling & Esquerdo, Vanessa Mendonça & Antonio de Almeida Pinto, Luiz & Konrad, Odorico, 2020. "Fish waste: An efficient alternative to biogas and methane production in an anaerobic mono-digestion system," Renewable Energy, Elsevier, vol. 147(P1), pages 798-805.
    11. Roberto Paglini & Marta Gandiglio & Andrea Lanzini, 2022. "Technologies for Deep Biogas Purification and Use in Zero-Emission Fuel Cells Systems," Energies, MDPI, vol. 15(10), pages 1-30, May.
    12. Rahmani, Ali Mohammad & Tyagi, Vinay Kumar & Kazmi, A.A. & Ojha, Chandra Shekhar P., 2023. "Hydrothermal and thermal-acid pretreatments of wheat straw: Methane yield, recalcitrant formation, process inhibition, kinetic modeling," Energy, Elsevier, vol. 283(C).
    13. Xiao, Youqian & Yang, Hongnan & Zheng, Dan & Liu, Yi & Deng, Liangwei, 2022. "Alleviation of ammonia inhibition in dry anaerobic digestion of swine manure," Energy, Elsevier, vol. 253(C).
    14. Cristiane Romio & Michael Vedel Wegener Kofoed & Henrik Bjarne Møller, 2021. "Digestate Post-Treatment Strategies for Additional Biogas Recovery: A Review," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
    15. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    16. Theresa Menzel & Peter Neubauer & Stefan Junne, 2020. "Role of Microbial Hydrolysis in Anaerobic Digestion," Energies, MDPI, vol. 13(21), pages 1-29, October.
    17. Hasanpour Seyedlar, Niloufar & Zamir, Seyed Morteza & Nosrati, Mohsen & Rene, Eldon R., 2024. "H2S mitigation for biogas upgrading in a full-scale anaerobic digestion process by using artificial neural network modeling," Renewable Energy, Elsevier, vol. 232(C).
    18. Pradhan, Debalaxmi & Bendu, Harisankar & Singh, R.K. & Murugan, S., 2017. "Mahua seed pyrolysis oil blends as an alternative fuel for light-duty diesel engines," Energy, Elsevier, vol. 118(C), pages 600-612.
    19. Janke, Leandro & Weinrich, Sören & Leite, Athaydes F. & Sträuber, Heike & Nikolausz, Marcell & Nelles, Michael & Stinner, Walter, 2019. "Pre-treatment of filter cake for anaerobic digestion in sugarcane biorefineries: Assessment of batch versus semi-continuous experiments," Renewable Energy, Elsevier, vol. 143(C), pages 1416-1426.
    20. Ahmad, Fiaz & Silva, Edson Luiz & Varesche, Maria Bernadete Amâncio, 2018. "Hydrothermal processing of biomass for anaerobic digestion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 108-124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.