IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v136y2014icp150-167.html
   My bibliography  Save this article

Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China

Author

Listed:
  • Xie, Y.L.
  • Huang, G.H.
  • Li, W.
  • Ji, L.

Abstract

In this study, a multistage inexact stochastic robust model was developed for regional energy system management in Jining City, China. Three scenarios about the electric power structure adjustment, clean power generation, and the emission reduction target are designed. Methods of interval parameter programming (IPP), stochastic robust optimization (SRO), and multistage stochastic programming (MSP) were incorporated into the developed model to tackle uncertainties described by interval values and probability distributions. The results indicated that the model can provide an effective linkage between conflicting economic cost and the system stability, and different power demand levels correspond to different electricity generation schemes with varied system cost and system-failure risk. The net system cost, power generation schemes, exported electricity, and captured CO2 amount were analyzed. The results indicated that the power generation by traditional technology would be decreased with the improvement of regional energy structure adjustment and environmental protection request. The modeling results are valuable for supporting the adjustment or justification of the existing power generation schemes within a complicated energy system under uncertainty.

Suggested Citation

  • Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
  • Handle: RePEc:eee:appene:v:136:y:2014:i:c:p:150-167
    DOI: 10.1016/j.apenergy.2014.09.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914009623
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.09.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, C. & Huang, G.H. & Cai, Y.P. & Xu, Y., 2011. "An interval-parameter minimax regret programming approach for power management systems planning under uncertainty," Applied Energy, Elsevier, vol. 88(8), pages 2835-2845, August.
    2. Wang, Can & Ye, Minhua & Cai, Wenjia & Chen, Jining, 2014. "The value of a clear, long-term climate policy agenda: A case study of China’s power sector using a multi-region optimization model," Applied Energy, Elsevier, vol. 125(C), pages 276-288.
    3. Herrera, I. & De Ruyck, J. & Ocaña, V.S. & Rubio, M. & Martínez, R.M. & Núñez, V., 2013. "Environmental impact of decentralized power generation in Santa Clara City, Cuba: An integrated assessment based on technological and human health risk indicators," Applied Energy, Elsevier, vol. 109(C), pages 24-35.
    4. Cristóbal, Jorge & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Irabien, Angel, 2012. "Multi-objective optimization of coal-fired electricity production with CO2 capture," Applied Energy, Elsevier, vol. 98(C), pages 266-272.
    5. Messner, S. & Golodnikov, A. & Gritsevskii, A., 1996. "A stochastic version of the dynamic linear programming model MESSAGE III," Energy, Elsevier, vol. 21(9), pages 775-784.
    6. Lund, Henrik & Munster, Ebbe, 2006. "Integrated energy systems and local energy markets," Energy Policy, Elsevier, vol. 34(10), pages 1152-1160, July.
    7. Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
    8. Jirutitijaroen, Panida & Kim, Sujin & Kittithreerapronchai, Oran & Prina, José, 2013. "An optimization model for natural gas supply portfolios of a power generation company," Applied Energy, Elsevier, vol. 107(C), pages 1-9.
    9. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    10. Xie, Y.L. & Li, Y.P. & Huang, G.H. & Li, Y.F., 2010. "An interval fixed-mix stochastic programming method for greenhouse gas mitigation in energy systems under uncertainty," Energy, Elsevier, vol. 35(12), pages 4627-4644.
    11. Yu, Chian-Son & Li, Han-Lin, 2000. "A robust optimization model for stochastic logistic problems," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 385-397, March.
    12. Chen, W.T. & Li, Y.P. & Huang, G.H. & Chen, X. & Li, Y.F., 2010. "A two-stage inexact-stochastic programming model for planning carbon dioxide emission trading under uncertainty," Applied Energy, Elsevier, vol. 87(3), pages 1033-1047, March.
    13. Arent, Doug & Pless, Jacquelyn & Mai, Trieu & Wiser, Ryan & Hand, Maureen & Baldwin, Sam & Heath, Garvin & Macknick, Jordan & Bazilian, Morgan & Schlosser, Adam & Denholm, Paul, 2014. "Implications of high renewable electricity penetration in the U.S. for water use, greenhouse gas emissions, land-use, and materials supply," Applied Energy, Elsevier, vol. 123(C), pages 368-377.
    14. Trianni, Andrea & Cagno, Enrico & De Donatis, Alessio, 2014. "A framework to characterize energy efficiency measures," Applied Energy, Elsevier, vol. 118(C), pages 207-220.
    15. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    16. Dubreuil, Aurelie & Assoumou, Edi & Bouckaert, Stephanie & Selosse, Sandrine & Maı¨zi, Nadia, 2013. "Water modeling in an energy optimization framework – The water-scarce middle east context," Applied Energy, Elsevier, vol. 101(C), pages 268-279.
    17. Yeo, In-Ae & Yoon, Seong-Hwan & Yee, Jurng-Jae, 2013. "Development of an Environment and energy Geographical Information System (E-GIS) construction model to support environmentally friendly urban planning," Applied Energy, Elsevier, vol. 104(C), pages 723-739.
    18. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    19. Leung, Stephen C.H. & Tsang, Sally O.S. & Ng, W.L. & Wu, Yue, 2007. "A robust optimization model for multi-site production planning problem in an uncertain environment," European Journal of Operational Research, Elsevier, vol. 181(1), pages 224-238, August.
    20. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    21. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "Planning regional energy system in association with greenhouse gas mitigation under uncertainty," Applied Energy, Elsevier, vol. 88(3), pages 599-611, March.
    22. Li, Y.F. & Huang, G.H. & Li, Y.P. & Xu, Y. & Chen, W.T., 2010. "Regional-scale electric power system planning under uncertainty--A multistage interval-stochastic integer linear programming approach," Energy Policy, Elsevier, vol. 38(1), pages 475-490, January.
    23. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    24. Rocha, Paula & Kuhn, Daniel, 2012. "Multistage stochastic portfolio optimisation in deregulated electricity markets using linear decision rules," European Journal of Operational Research, Elsevier, vol. 216(2), pages 397-408.
    25. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Tan, Q., 2009. "Identification of optimal strategies for energy management systems planning under multiple uncertainties," Applied Energy, Elsevier, vol. 86(4), pages 480-495, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, S. & Xie, Y.L. & Huang, G.H. & Yao, Y. & Wang, S.Y. & Li, Y.F., 2021. "A Structural Adjustment optimization model for electric-power system management under multiple Uncertainties—A case study of Urumqi city, China," Energy Policy, Elsevier, vol. 149(C).
    2. Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2022. "Multi-aspect efficiency measurement of multi-objective energy planning model dealing with uncertainties," Applied Energy, Elsevier, vol. 313(C).
    3. Zhen, J.L. & Huang, G.H. & Li, W. & Liu, Z.P. & Wu, C.B., 2017. "An inexact optimization model for regional electric system steady operation management considering integrated renewable resources," Energy, Elsevier, vol. 135(C), pages 195-209.
    4. Liang, M.S. & Huang, G.H. & Chen, J.P. & Li, Y.P., 2022. "Energy-water-carbon nexus system planning: A case study of Yangtze River Delta urban agglomeration, China," Applied Energy, Elsevier, vol. 308(C).
    5. Yang Zhang & Zhenghui Fu & Yulei Xie & Qing Hu & Zheng Li & Huaicheng Guo, 2020. "A Comprehensive Forecasting–Optimization Analysis Framework for Environmental-Oriented Power System Management—A Case Study of Harbin City, China," Sustainability, MDPI, vol. 12(10), pages 1-26, May.
    6. Ji, Ling & Zhang, Beibei & Huang, Guohe & Wang, Peng, 2020. "A novel multi-stage fuzzy stochastic programming for electricity system structure optimization and planning with energy-water nexus - A case study of Tianjin, China," Energy, Elsevier, vol. 190(C).
    7. Shen, Feifei & Zhao, Liang & Du, Wenli & Zhong, Weimin & Qian, Feng, 2020. "Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    8. Sun, Yanlong & Kang, Chongqing & Xia, Qing & Chen, Qixin & Zhang, Ning & Cheng, Yaohua, 2017. "Analysis of transmission expansion planning considering consumption-based carbon emission accounting," Applied Energy, Elsevier, vol. 193(C), pages 232-242.
    9. Ji, Ling & Zhang, Bei-Bei & Huang, Guo-He & Xie, Yu-Lei & Niu, Dong-Xiao, 2018. "GHG-mitigation oriented and coal-consumption constrained inexact robust model for regional energy structure adjustment – A case study for Jiangsu Province, China," Renewable Energy, Elsevier, vol. 123(C), pages 549-562.
    10. Wu, C.B. & Guan, P.B. & Zhong, L.N. & Lv, J. & Hu, X.F. & Huang, G.H. & Li, C.C., 2020. "An optimized low-carbon production planning model for power industry in coal-dependent regions - A case study of Shandong, China," Energy, Elsevier, vol. 192(C).
    11. Jui-Yuan Lee & Han-Fu Lin, 2019. "Multi-Footprint Constrained Energy Sector Planning," Energies, MDPI, vol. 12(12), pages 1-18, June.
    12. Yin, J.N. & Huang, G.H. & Xie, Y.L. & An, Y.K., 2021. "Carbon-subsidized inter-regional electric power system planning under cost-risk tradeoff and uncertainty: A case study of Inner Mongolia, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Qi Jiang & Zhigang Yin, 2023. "The Optimal Path for China to Achieve the “Dual Carbon” Target from the Perspective of Energy Structure Optimization," Sustainability, MDPI, vol. 15(13), pages 1-32, June.
    14. Xiangyu Kong & Jingtao Yao & Zhijun E & Xin Wang, 2019. "Generation Expansion Planning Based on Dynamic Bayesian Network Considering the Uncertainty of Renewable Energy Resources," Energies, MDPI, vol. 12(13), pages 1-20, June.
    15. Xie, Y.L. & Xia, D.H. & Ji, L. & Zhou, W.N. & Huang, G.H., 2017. "An inexact cost-risk balanced model for regional energy structure adjustment management and resources environmental effect analysis-a case study of Shandong province, China," Energy, Elsevier, vol. 126(C), pages 374-391.
    16. Xiao Zhao & Xuhui Xia & Guodong Yu, 2019. "Primal-Dual Learning Based Risk-Averse Optimal Integrated Allocation of Hybrid Energy Generation Plants under Uncertainty," Energies, MDPI, vol. 12(12), pages 1-15, June.
    17. Yu, Dongwei & Tan, Hongwei, 2016. "Application of ‘potential carbon’ in energy planning with carbon emission constraints," Applied Energy, Elsevier, vol. 169(C), pages 363-369.
    18. Cao, R. & Huang, G.H. & Chen, J.P. & Li, Y.P. & He, C.Y., 2021. "A chance-constrained urban agglomeration energy model for cooperative carbon emission management," Energy, Elsevier, vol. 223(C).
    19. Yulei Xie & Linrui Wang & Guohe Huang & Dehong Xia & Ling Ji, 2018. "A Stochastic Inexact Robust Model for Regional Energy System Management and Emission Reduction Potential Analysis—A Case Study of Zibo City, China," Energies, MDPI, vol. 11(8), pages 1-24, August.
    20. Guan, Panbo & Huang, Guohe & Wu, Chuanbao & Wang, Linrui & Li, Chaoci & Wang, Yuanyi, 2019. "Analysis of emission taxes levying on regional electric power structure adjustment with an inexact optimization model - A case study of Zibo, China," Energy Economics, Elsevier, vol. 84(C).
    21. He, Qi & Jiang, Xujia & Gouldson, Andy & Sudmant, Andrew & Guan, Dabo & Colenbrander, Sarah & Xue, Tao & Zheng, Bo & Zhang, Qiang, 2016. "Climate change mitigation in Chinese megacities: A measures-based analysis of opportunities in the residential sector," Applied Energy, Elsevier, vol. 184(C), pages 769-778.
    22. Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2021. "Hybrid stochastic robust optimization and robust optimization for energy planning – A social impact-constrained case study," Applied Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan, Panbo & Huang, Guohe & Wu, Chuanbao & Wang, Linrui & Li, Chaoci & Wang, Yuanyi, 2019. "Analysis of emission taxes levying on regional electric power structure adjustment with an inexact optimization model - A case study of Zibo, China," Energy Economics, Elsevier, vol. 84(C).
    2. Wang, Xingwei & Cai, Yanpeng & Chen, Jiajun & Dai, Chao, 2013. "A grey-forecasting interval-parameter mixed-integer programming approach for integrated electric-environmental management–A case study of Beijing," Energy, Elsevier, vol. 63(C), pages 334-344.
    3. Yulei Xie & Linrui Wang & Guohe Huang & Dehong Xia & Ling Ji, 2018. "A Stochastic Inexact Robust Model for Regional Energy System Management and Emission Reduction Potential Analysis—A Case Study of Zibo City, China," Energies, MDPI, vol. 11(8), pages 1-24, August.
    4. Piao, M.J. & Li, Y.P. & Huang, G.H. & Nie, S., 2015. "Risk analysis for Shanghai's electric power system under multiple uncertainties," Energy, Elsevier, vol. 87(C), pages 104-119.
    5. Li, G.C. & Huang, G.H. & Lin, Q.G. & Zhang, X.D. & Tan, Q. & Chen, Y.M., 2011. "Development of a GHG-mitigation oriented inexact dynamic model for regional energy system management," Energy, Elsevier, vol. 36(5), pages 3388-3398.
    6. Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
    7. Ji, L. & Niu, D.X. & Huang, G.H., 2014. "An inexact two-stage stochastic robust programming for residential micro-grid management-based on random demand," Energy, Elsevier, vol. 67(C), pages 186-199.
    8. Xie, Y.L. & Xia, D.H. & Ji, L. & Zhou, W.N. & Huang, G.H., 2017. "An inexact cost-risk balanced model for regional energy structure adjustment management and resources environmental effect analysis-a case study of Shandong province, China," Energy, Elsevier, vol. 126(C), pages 374-391.
    9. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    10. Chen, F. & Huang, G.H. & Fan, Y.R. & Chen, J.P., 2017. "A copula-based fuzzy chance-constrained programming model and its application to electric power generation systems planning," Applied Energy, Elsevier, vol. 187(C), pages 291-309.
    11. Chen, C. & Li, Y.P. & Huang, G.H., 2013. "An inexact robust optimization method for supporting carbon dioxide emissions management in regional electric-power systems," Energy Economics, Elsevier, vol. 40(C), pages 441-456.
    12. Tan, Raymond R., 2011. "A general source-sink model with inoperability constraints for robust energy sector planning," Applied Energy, Elsevier, vol. 88(11), pages 3759-3764.
    13. Welsch, M. & Hermann, S. & Howells, M. & Rogner, H.H. & Young, C. & Ramma, I. & Bazilian, M. & Fischer, G. & Alfstad, T. & Gielen, D. & Le Blanc, D. & Röhrl, A. & Steduto, P. & Müller, A., 2014. "Adding value with CLEWS – Modelling the energy system and its interdependencies for Mauritius," Applied Energy, Elsevier, vol. 113(C), pages 1434-1445.
    14. Guangxiao Hu & Xiaoming Ma & Junping Ji, 2017. "A Stochastic Optimization Model for Carbon Mitigation Path under Demand Uncertainty of the Power Sector in Shenzhen, China," Sustainability, MDPI, vol. 9(11), pages 1-12, October.
    15. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "Planning regional energy system in association with greenhouse gas mitigation under uncertainty," Applied Energy, Elsevier, vol. 88(3), pages 599-611, March.
    16. Dong, C. & Huang, G.H. & Cai, Y.P. & Xu, Y., 2011. "An interval-parameter minimax regret programming approach for power management systems planning under uncertainty," Applied Energy, Elsevier, vol. 88(8), pages 2835-2845, August.
    17. Xie, Y.L. & Li, Y.P. & Huang, G.H. & Li, Y.F., 2010. "An interval fixed-mix stochastic programming method for greenhouse gas mitigation in energy systems under uncertainty," Energy, Elsevier, vol. 35(12), pages 4627-4644.
    18. Chen, C. & Li, Y.P. & Huang, G.H. & Zhu, Y., 2012. "An inexact robust nonlinear optimization method for energy systems planning under uncertainty," Renewable Energy, Elsevier, vol. 47(C), pages 55-66.
    19. Jin, L. & Huang, G.H. & Fan, Y.R. & Wang, L. & Wu, T., 2015. "A pseudo-optimal inexact stochastic interval T2 fuzzy sets approach for energy and environmental systems planning under uncertainty: A case study for Xiamen City of China," Applied Energy, Elsevier, vol. 138(C), pages 71-90.
    20. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:136:y:2014:i:c:p:150-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.