IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i11p3759-3764.html
   My bibliography  Save this article

A general source-sink model with inoperability constraints for robust energy sector planning

Author

Listed:
  • Tan, Raymond R.

Abstract

The concept of inoperability was originally introduced as a means of quantifying risk in systems comprised of interdependent subsystems, using a modified input–output framework. This paper describes a novel robust optimization model for energy planning with inoperability constraints. The formulation is based on the established source-sink framework, which has been used extensively for energy planning applications under various environmental footprint constraints. The proposed model determines the optimal allocation of various energy sources within a system to corresponding energy sinks or demands, while ensuring that inoperability limits of the latter are satisfied for multiple enumerated scenarios. The basic formulation results in a linear program (LP), while a mixed integer linear programming (MILP) extension is also described. In either case, a globally optimal solution can be easily determined if one exists. Illustrative case studies are then given to demonstrate this new method.

Suggested Citation

  • Tan, Raymond R., 2011. "A general source-sink model with inoperability constraints for robust energy sector planning," Applied Energy, Elsevier, vol. 88(11), pages 3759-3764.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:11:p:3759-3764
    DOI: 10.1016/j.apenergy.2011.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911002388
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, C. & Huang, G.H. & Cai, Y.P. & Xu, Y., 2011. "An interval-parameter minimax regret programming approach for power management systems planning under uncertainty," Applied Energy, Elsevier, vol. 88(8), pages 2835-2845, August.
    2. Joost Santos & Kash Barker & Paul Zelinke, 2008. "Sequential Decision-making in Interdependent Sectors with Multiobjective Inoperability Decision Trees: Application to Biofuel Subsidy Analysis," Economic Systems Research, Taylor & Francis Journals, vol. 20(1), pages 29-56.
    3. Lee, Sin Cherng & Sum Ng, Denny Kok & Yee Foo, Dominic Chwan & Tan, Raymond R., 2009. "Extended pinch targeting techniques for carbon-constrained energy sector planning," Applied Energy, Elsevier, vol. 86(1), pages 60-67, January.
    4. Pekala, Lukasz M. & Tan, Raymond R. & Foo, Dominic C.Y. & Jezowski, Jacek M., 2010. "Optimal energy planning models with carbon footprint constraints," Applied Energy, Elsevier, vol. 87(6), pages 1903-1910, June.
    5. Tan, Raymond R. & Foo, Dominic C.Y., 2007. "Pinch analysis approach to carbon-constrained energy sector planning," Energy, Elsevier, vol. 32(8), pages 1422-1429.
    6. Lam, Hon Loong & Varbanov, Petar Sabev & Klemes, Jirí Jaromír, 2011. "Regional renewable energy and resource planning," Applied Energy, Elsevier, vol. 88(2), pages 545-550, February.
    7. Atkins, Martin J. & Morrison, Andrew S. & Walmsley, Michael R.W., 2010. "Carbon Emissions Pinch Analysis (CEPA) for emissions reduction in the New Zealand electricity sector," Applied Energy, Elsevier, vol. 87(3), pages 982-987, March.
    8. Tan, Raymond R. & Foo, Dominic Chwan Yee & Aviso, Kathleen B. & Ng, Denny Kok Sum, 2009. "The use of graphical pinch analysis for visualizing water footprint constraints in biofuel production," Applied Energy, Elsevier, vol. 86(5), pages 605-609, May.
    9. Crilly, Damien & Zhelev, Toshko, 2008. "Emissions targeting and planning: An application of CO2 emissions pinch analysis (CEPA) to the Irish electricity generation sector," Energy, Elsevier, vol. 33(10), pages 1498-1507.
    10. Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
    11. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    12. Foo, Dominic C.Y. & Tan, Raymond R. & Ng, Denny K.S., 2008. "Carbon and footprint-constrained energy planning using cascade analysis technique," Energy, Elsevier, vol. 33(10), pages 1480-1488.
    13. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    14. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    15. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Inglesi-Lotz, Roula & Blignaut, James N., 2011. "South Africa’s electricity consumption: A sectoral decomposition analysis," Applied Energy, Elsevier, vol. 88(12), pages 4779-4784.
    2. Bentsen, Niclas Scott & Jack, Michael W. & Felby, Claus & Thorsen, Bo Jellesmark, 2014. "Allocation of biomass resources for minimising energy system greenhouse gas emissions," Energy, Elsevier, vol. 69(C), pages 506-515.
    3. Martinez-Hernandez, Elias & Sadhukhan, Jhuma & Campbell, Grant M., 2013. "Integration of bioethanol as an in-process material in biorefineries using mass pinch analysis," Applied Energy, Elsevier, vol. 104(C), pages 517-526.
    4. Kasivisvanathan, Harresh & Barilea, Ivan Dale U. & Ng, Denny K.S. & Tan, Raymond R., 2013. "Optimal operational adjustment in multi-functional energy systems in response to process inoperability," Applied Energy, Elsevier, vol. 102(C), pages 492-500.
    5. Al-Mayyahi, Mohmmad A. & Hoadley, Andrew F.A. & Rangaiah, G.P., 2013. "A novel graphical approach to target CO2 emissions for energy resource planning and utility system optimization," Applied Energy, Elsevier, vol. 104(C), pages 783-790.
    6. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2017. "Energy-economic recovery resilience with Input-Output linear programming models," Energy Economics, Elsevier, vol. 68(C), pages 177-191.
    7. Foo, Dominic C.Y. & Tan, Raymond R. & Lam, Hon Loong & Abdul Aziz, Mustafa Kamal & Klemeš, Jiří Jaromír, 2013. "Robust models for the synthesis of flexible palm oil-based regional bioenergy supply chain," Energy, Elsevier, vol. 55(C), pages 68-73.
    8. Jui-Yuan Lee & Han-Fu Lin, 2019. "Multi-Footprint Constrained Energy Sector Planning," Energies, MDPI, vol. 12(12), pages 1-18, June.
    9. Aristotle T. Ubando & Isidro Antonio V. Marfori & Kathleen B. Aviso & Raymond R. Tan, 2019. "Optimal Operational Adjustment of a Community-Based Off-Grid Polygeneration Plant using a Fuzzy Mixed Integer Linear Programming Model," Energies, MDPI, vol. 12(4), pages 1-17, February.
    10. Krista Danielle S. Yu & Kathleen B. Aviso & Michael Angelo B. Promentilla & Joost R. Santos & Raymond R. Tan, 2016. "A weighted fuzzy linear programming model in economic input–output analysis: an application to risk management of energy system disruptions," Environment Systems and Decisions, Springer, vol. 36(2), pages 183-195, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    2. Yu, Dongwei & Tan, Hongwei, 2016. "Application of ‘potential carbon’ in energy planning with carbon emission constraints," Applied Energy, Elsevier, vol. 169(C), pages 363-369.
    3. Lopez, Neil Stephen A. & Foo, Dominic C.Y. & Tan, Raymond R., 2021. "Optimizing regional electricity trading with Carbon Emissions Pinch Analysis," Energy, Elsevier, vol. 237(C).
    4. Lee, Jui-Yuan, 2017. "A multi-period optimisation model for planning carbon sequestration retrofits in the electricity sector," Applied Energy, Elsevier, vol. 198(C), pages 12-20.
    5. Rok Gomilšek & Lidija Čuček & Marko Homšak & Raymond R. Tan & Zdravko Kravanja, 2020. "Carbon Emissions Constrained Energy Planning for Aluminum Products," Energies, MDPI, vol. 13(11), pages 1-18, June.
    6. Jui-Yuan Lee & Han-Fu Lin, 2019. "Multi-Footprint Constrained Energy Sector Planning," Energies, MDPI, vol. 12(12), pages 1-18, June.
    7. Nair, Purusothmn Nair S Bhasker & Tan, Raymond R. & Foo, Dominic C.Y., 2022. "Extended graphical approach for the implementation of energy-consuming negative emission technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Ooi, Raymond E.H. & Foo, Dominic C.Y. & Tan, Raymond R., 2014. "Targeting for carbon sequestration retrofit planning in the power generation sector for multi-period problems," Applied Energy, Elsevier, vol. 113(C), pages 477-487.
    9. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    10. Krishna Priya, G.S. & Bandyopadhyay, Santanu, 2017. "Multi-objective pinch analysis for power system planning," Applied Energy, Elsevier, vol. 202(C), pages 335-347.
    11. Li, Zhiwei & Jia, Xiaoping & Foo, Dominic C.Y. & Tan, Raymond R., 2016. "Minimizing carbon footprint using pinch analysis: The case of regional renewable electricity planning in China," Applied Energy, Elsevier, vol. 184(C), pages 1051-1062.
    12. Liang, Sai & Zhang, Tianzhu, 2011. "Managing urban energy system: A case of Suzhou in China," Energy Policy, Elsevier, vol. 39(5), pages 2910-2918, May.
    13. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Pekala, Lukasz M. & Tan, Raymond R. & Foo, Dominic C.Y. & Jezowski, Jacek M., 2010. "Optimal energy planning models with carbon footprint constraints," Applied Energy, Elsevier, vol. 87(6), pages 1903-1910, June.
    15. de Lira Quaresma, Ana Carolina & Francisco, Flávio S. & Pessoa, Fernando L.P. & Queiroz, Eduardo M., 2018. "Carbon emission reduction in the Brazilian electricity sector using Carbon Sources Diagram," Energy, Elsevier, vol. 159(C), pages 134-150.
    16. Walmsley, Michael R.W. & Walmsley, Timothy G. & Atkins, Martin J. & Kamp, Peter J.J. & Neale, James R., 2014. "Minimising carbon emissions and energy expended for electricity generation in New Zealand through to 2050," Applied Energy, Elsevier, vol. 135(C), pages 656-665.
    17. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
    18. Mohd Yahya, Nur Syahira & Ng, Lik Yin & Andiappan, Viknesh, 2021. "Optimisation and planning of biomass supply chain for new and existing power plants based on carbon reduction targets," Energy, Elsevier, vol. 237(C).
    19. Atkins, Martin J. & Morrison, Andrew S. & Walmsley, Michael R.W., 2010. "Carbon Emissions Pinch Analysis (CEPA) for emissions reduction in the New Zealand electricity sector," Applied Energy, Elsevier, vol. 87(3), pages 982-987, March.
    20. Yang Zhang & Hekun Wang & Taomeizi Zhou & Zhiwei Li & Xiaoping Jia, 2022. "Extended Carbon Emission Pinch Analysis for the Low-Carbon Tobacco Industry," Energies, MDPI, vol. 15(13), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:11:p:3759-3764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.