IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v135y2017icp195-209.html
   My bibliography  Save this article

An inexact optimization model for regional electric system steady operation management considering integrated renewable resources

Author

Listed:
  • Zhen, J.L.
  • Huang, G.H.
  • Li, W.
  • Liu, Z.P.
  • Wu, C.B.

Abstract

In this study, an inexact two-stage stochastic fuzzy programming (ITSFP) is developed for regional power generation planning with considering the intermittency and fuzziness of renewable energy power output. ITSFP incorporates interval-parameter programming (IPP), two-stage stochastic programming (TSP), and fuzzy credibility constrained programming (FCCP) within a general optimization framework which can tackle uncertainties expressed as intervals, probability distributions, and fuzzy sets. The developed method is applied to a regional electric power system over a one-day optimization horizon coupled with air pollution control. The power generation schemes, imported electricity, and system cost under various environmental goals and risk preferences are analyzed. The obtained results indicate that the model can provide a linkage between predefined electric power generation schedule and the relevant economic implications, as well as more reasonable decision alternatives for decision makers by loosening system constraints at specified confidence level. Besides, the fuzziness of forecast error corresponding to the variability of renewable energy resources could be effectively reflected. Moreover, the results are useful for addressing the trade-off between system economy and system risk.

Suggested Citation

  • Zhen, J.L. & Huang, G.H. & Li, W. & Liu, Z.P. & Wu, C.B., 2017. "An inexact optimization model for regional electric system steady operation management considering integrated renewable resources," Energy, Elsevier, vol. 135(C), pages 195-209.
  • Handle: RePEc:eee:energy:v:135:y:2017:i:c:p:195-209
    DOI: 10.1016/j.energy.2017.06.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217310472
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.06.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moura, Pedro S. & de Almeida, Aníbal T., 2010. "Multi-objective optimization of a mixed renewable system with demand-side management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1461-1468, June.
    2. van der Weijde, Adriaan Hendrik & Hobbs, Benjamin F., 2012. "The economics of planning electricity transmission to accommodate renewables: Using two-stage optimisation to evaluate flexibility and the cost of disregarding uncertainty," Energy Economics, Elsevier, vol. 34(6), pages 2089-2101.
    3. Kang, Junjie & Yuan, Jiahai & Hu, Zhaoguang & Xu, Yan, 2012. "Review on wind power development and relevant policies in China during the 11th Five-Year-Plan period," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1907-1915.
    4. Chen, Jun & Garcia, Humberto E., 2016. "Economic optimization of operations for hybrid energy systems under variable markets," Applied Energy, Elsevier, vol. 177(C), pages 11-24.
    5. Timothy Considine & Donald F. Larson, 2012. "Short Term Electric Production Technology Switching Under Carbon Cap and Trade," Energies, MDPI, vol. 5(10), pages 1-21, October.
    6. Rong, Aiying & Lahdelma, Risto, 2008. "Fuzzy chance constrained linear programming model for optimizing the scrap charge in steel production," European Journal of Operational Research, Elsevier, vol. 186(3), pages 953-964, May.
    7. Zhang, Y.M. & Huang, G.H. & Lin, Q.G. & Lu, H.W., 2012. "Integer fuzzy credibility constrained programming for power system management," Energy, Elsevier, vol. 38(1), pages 398-405.
    8. Heinrich, G. & Howells, M. & Basson, L. & Petrie, J., 2007. "Electricity supply industry modelling for multiple objectives under demand growth uncertainty," Energy, Elsevier, vol. 32(11), pages 2210-2229.
    9. Chen, W.T. & Li, Y.P. & Huang, G.H. & Chen, X. & Li, Y.F., 2010. "A two-stage inexact-stochastic programming model for planning carbon dioxide emission trading under uncertainty," Applied Energy, Elsevier, vol. 87(3), pages 1033-1047, March.
    10. Ippolito, M.G. & Di Silvestre, M.L. & Riva Sanseverino, E. & Zizzo, G. & Graditi, G., 2014. "Multi-objective optimized management of electrical energy storage systems in an islanded network with renewable energy sources under different design scenarios," Energy, Elsevier, vol. 64(C), pages 648-662.
    11. Trianni, Andrea & Cagno, Enrico & De Donatis, Alessio, 2014. "A framework to characterize energy efficiency measures," Applied Energy, Elsevier, vol. 118(C), pages 207-220.
    12. Milan, Christian & Bojesen, Carsten & Nielsen, Mads Pagh, 2012. "A cost optimization model for 100% renewable residential energy supply systems," Energy, Elsevier, vol. 48(1), pages 118-127.
    13. Taha, Ahmad F. & Hachem, Nadim A. & Panchal, Jitesh H., 2014. "A Quasi-Feed-In-Tariff policy formulation in micro-grids: A bi-level multi-period approach," Energy Policy, Elsevier, vol. 71(C), pages 63-75.
    14. of England, Bank, 2016. "Markets and operations," Bank of England Quarterly Bulletin, Bank of England, vol. 56(4), pages 212-221.
    15. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyu Sun & Hao Wu & Siqi Guo & Lingwei Zheng, 2022. "Day-Ahead Optimal Scheduling of Integrated Energy System Based on Type-II Fuzzy Interval Chance-Constrained Programming," Energies, MDPI, vol. 15(18), pages 1-17, September.
    2. Yang Zhang & Zhenghui Fu & Yulei Xie & Qing Hu & Zheng Li & Huaicheng Guo, 2020. "A Comprehensive Forecasting–Optimization Analysis Framework for Environmental-Oriented Power System Management—A Case Study of Harbin City, China," Sustainability, MDPI, vol. 12(10), pages 1-26, May.
    3. Zhou, Yanlai & Guo, Shenglian & Chang, Fi-John & Liu, Pan & Chen, Alexander B., 2018. "Methodology that improves water utilization and hydropower generation without increasing flood risk in mega cascade reservoirs," Energy, Elsevier, vol. 143(C), pages 785-796.
    4. Gong, Yu & Liu, Pan & Liu, Yini & Huang, Kangdi, 2021. "Robust operation interval of a large-scale hydro-photovoltaic power system to cope with emergencies," Applied Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2017. "Optimal operation, configuration and sizing of generation and storage technologies for residential heat pump systems in the spotlight of self-consumption of photovoltaic electricity," Applied Energy, Elsevier, vol. 188(C), pages 604-619.
    2. Guan, Panbo & Huang, Guohe & Wu, Chuanbao & Wang, Linrui & Li, Chaoci & Wang, Yuanyi, 2019. "Analysis of emission taxes levying on regional electric power structure adjustment with an inexact optimization model - A case study of Zibo, China," Energy Economics, Elsevier, vol. 84(C).
    3. Zhang, X.Y. & Huang, G.H. & Zhu, H. & Li, Y.P., 2017. "A fuzzy-stochastic power system planning model: Reflection of dual objectives and dual uncertainties," Energy, Elsevier, vol. 123(C), pages 664-676.
    4. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
    5. Reddy, S. Surender, 2017. "Optimal scheduling of thermal-wind-solar power system with storage," Renewable Energy, Elsevier, vol. 101(C), pages 1357-1368.
    6. Heetae Kim & Jinwoo Bae & Seoin Baek & Donggyun Nam & Hyunsung Cho & Hyun Joon Chang, 2017. "Comparative Analysis between the Government Micro-Grid Plan and Computer Simulation Results Based on Real Data: The Practical Case for a South Korean Island," Sustainability, MDPI, vol. 9(2), pages 1-18, January.
    7. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad, 2020. "Optimal operating strategy of high-temperature heat and power storage system coupled with a wind farm in energy market," Energy, Elsevier, vol. 210(C).
    8. Escalante Soberanis, M.A. & Mithrush, T. & Bassam, A. & Mérida, W., 2018. "A sensitivity analysis to determine technical and economic feasibility of energy storage systems implementation: A flow battery case study," Renewable Energy, Elsevier, vol. 115(C), pages 547-557.
    9. Alipour, Manijeh & Mohammadi-Ivatloo, Behnam & Moradi-Dalvand, Mohammad & Zare, Kazem, 2017. "Stochastic scheduling of aggregators of plug-in electric vehicles for participation in energy and ancillary service markets," Energy, Elsevier, vol. 118(C), pages 1168-1179.
    10. Salpakari, Jyri & Rasku, Topi & Lindgren, Juuso & Lund, Peter D., 2017. "Flexibility of electric vehicles and space heating in net zero energy houses: an optimal control model with thermal dynamics and battery degradation," Applied Energy, Elsevier, vol. 190(C), pages 800-812.
    11. Every, Jeremy & Li, Li & Dorrell, David G., 2017. "Leveraging smart meter data for economic optimization of residential photovoltaics under existing tariff structures and incentive schemes," Applied Energy, Elsevier, vol. 201(C), pages 158-173.
    12. Mohammadali Kiehbadroudinezhad & Adel Merabet & Homa Hosseinzadeh-Bandbafha, 2022. "Review of Latest Advances and Prospects of Energy Storage Systems: Considering Economic, Reliability, Sizing, and Environmental Impacts Approach," Clean Technol., MDPI, vol. 4(2), pages 1-25, June.
    13. Bin Luo & Shumin Miao & Chuntian Cheng & Yi Lei & Gang Chen & Lang Gao, 2019. "Long-Term Generation Scheduling for Cascade Hydropower Plants Considering Price Correlation between Multiple Markets," Energies, MDPI, vol. 12(12), pages 1-17, June.
    14. Popov, Dimityr & Borissova, Ana, 2017. "Innovative configuration of a hybrid nuclear-solar tower power plant," Energy, Elsevier, vol. 125(C), pages 736-746.
    15. Chen, Jun & Rabiti, Cristian, 2017. "Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems," Energy, Elsevier, vol. 120(C), pages 507-517.
    16. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    17. Epiney, A. & Rabiti, C. & Talbot, P. & Alfonsi, A., 2020. "Economic analysis of a nuclear hybrid energy system in a stochastic environment including wind turbines in an electricity grid," Applied Energy, Elsevier, vol. 260(C).
    18. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    19. Scheubel, Christopher & Zipperle, Thomas & Tzscheutschler, Peter, 2017. "Modeling of industrial-scale hybrid renewable energy systems (HRES) – The profitability of decentralized supply for industry," Renewable Energy, Elsevier, vol. 108(C), pages 52-63.
    20. Sreepradha, Chandrasekharan & Panda, Rames Chandra & Bhuvaneswari, Natrajan Swaminathan, 2017. "Mathematical model for integrated coal fired thermal boiler using physical laws," Energy, Elsevier, vol. 118(C), pages 985-998.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:135:y:2017:i:c:p:195-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.