IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i8p2506-2516.html
   My bibliography  Save this article

Integer programming with random-boundary intervals for planning municipal power systems

Author

Listed:
  • Cao, M.F.
  • Huang, G.H.
  • Lin, Q.G.

Abstract

Uncertainty attached to municipal power systems has long been crucial considerations for the related planners. Such an uncertainty could be expressed as random-boundary intervals (RBIs). In this study, an integer programming with random-boundary intervals (IPRBI) approach was developed for municipal electricity-supply management under uncertainty. A concept of random-boundary interval (RBI) was introduced to reflect dual uncertainties that exist in many system components. A solution method named two-boundary approach (TBA) was proposed to solve the IPRBI model. A case study was provided for demonstrating applicability of the developed method. The results indicated that the RBI and integer-interval concepts were effective in dealing with highly uncertain parameters. The IPRBI method solutions could be used for generating efficient electricity-supply schemes under various complexities. They can also be used for analyzing tradeoffs between system cost and electricity-shortage risk. Compared with the existing methods, IPRBI was advantageous in reflecting the complexities of system uncertainties that were presented as RBIs, integer-intervals and intervals.

Suggested Citation

  • Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:8:p:2506-2516
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00069-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fuss, Sabine & Szolgayova, Jana & Obersteiner, Michael & Gusti, Mykola, 2008. "Investment under market and climate policy uncertainty," Applied Energy, Elsevier, vol. 85(8), pages 708-721, August.
    2. A. Charnes & W. W. Cooper, 1983. "Response to "Decision Problems Under Risk and Chance Constrained Programming: Dilemmas in the Transition"," Management Science, INFORMS, vol. 29(6), pages 750-753, June.
    3. Huang, Guo H. & Baetz, Brian W. & Patry, Gilles G., 1995. "Grey integer programming: An application to waste management planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 83(3), pages 594-620, June.
    4. Atkins, Martin J. & Morrison, Andrew S. & Walmsley, Michael R.W., 2010. "Carbon Emissions Pinch Analysis (CEPA) for emissions reduction in the New Zealand electricity sector," Applied Energy, Elsevier, vol. 87(3), pages 982-987, March.
    5. Sampath Rajagopalan & Medini R. Singh & Thomas E. Morton, 1998. "Capacity Expansion and Replacement in Growing Markets with Uncertain Technological Breakthroughs," Management Science, INFORMS, vol. 44(1), pages 12-30, January.
    6. Kannan, R., 2009. "Uncertainties in key low carbon power generation technologies - Implication for UK decarbonisation targets," Applied Energy, Elsevier, vol. 86(10), pages 1873-1886, October.
    7. Ren, Hongbo & Gao, Weijun, 2010. "A MILP model for integrated plan and evaluation of distributed energy systems," Applied Energy, Elsevier, vol. 87(3), pages 1001-1014, March.
    8. Huang, G. H. & Baetz, B. W. & Patry, G. G., 1995. "Grey fuzzy integer programming: An application to regional waste management planning under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 29(1), pages 17-38, March.
    9. Li, Y.P. & Huang, G.H. & Guo, P. & Yang, Z.F. & Nie, S.L., 2010. "A dual-interval vertex analysis method and its application to environmental decision making under uncertainty," European Journal of Operational Research, Elsevier, vol. 200(2), pages 536-550, January.
    10. Chen, W.T. & Li, Y.P. & Huang, G.H. & Chen, X. & Li, Y.F., 2010. "A two-stage inexact-stochastic programming model for planning carbon dioxide emission trading under uncertainty," Applied Energy, Elsevier, vol. 87(3), pages 1033-1047, March.
    11. K Darby-Dowman & S Barker & E Audsley & D Parsons, 2000. "A two-stage stochastic programming with recourse model for determining robust planting plans in horticulture," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(1), pages 83-89, January.
    12. Muela, E. & Schweickardt, G. & Garces, F., 2007. "Fuzzy possibilistic model for medium-term power generation planning with environmental criteria," Energy Policy, Elsevier, vol. 35(11), pages 5643-5655, November.
    13. Lin, Q.G. & Huang, G.H. & Bass, B. & Qin, X.S., 2009. "IFTEM: An interval-fuzzy two-stage stochastic optimization model for regional energy systems planning under uncertainty," Energy Policy, Elsevier, vol. 37(3), pages 868-878, March.
    14. Li, Y.F. & Huang, G.H. & Li, Y.P. & Xu, Y. & Chen, W.T., 2010. "Regional-scale electric power system planning under uncertainty--A multistage interval-stochastic integer linear programming approach," Energy Policy, Elsevier, vol. 38(1), pages 475-490, January.
    15. Lucas, Nigel & Papaconstantinou, Dimitrios, 1982. "Electricity planning under uncertainty Risks, margins and the uncertain planner," Energy Policy, Elsevier, vol. 10(2), pages 143-152, June.
    16. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Tan, Q., 2009. "Identification of optimal strategies for energy management systems planning under multiple uncertainties," Applied Energy, Elsevier, vol. 86(4), pages 480-495, April.
    17. Huang, G. H., 1998. "A hybrid inexact-stochastic water management model," European Journal of Operational Research, Elsevier, vol. 107(1), pages 137-158, May.
    18. Aghaei, J. & Shayanfar, H.A. & Amjady, N., 2009. "Joint market clearing in a stochastic framework considering power system security," Applied Energy, Elsevier, vol. 86(9), pages 1675-1682, September.
    19. Abraham Grosfeld-Nir & Asher Tishler, 1993. "A Stochastic Model for the Measurement of Electricity Outage Costs," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 157-174.
    20. Chanas, Stefan & Zielinski, Pawel, 2000. "On the equivalence of two optimization methods for fuzzy linear programming problems," European Journal of Operational Research, Elsevier, vol. 121(1), pages 56-63, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "Planning regional energy system in association with greenhouse gas mitigation under uncertainty," Applied Energy, Elsevier, vol. 88(3), pages 599-611, March.
    2. Dong, C. & Huang, G.H. & Cai, Y.P. & Xu, Y., 2011. "An interval-parameter minimax regret programming approach for power management systems planning under uncertainty," Applied Energy, Elsevier, vol. 88(8), pages 2835-2845, August.
    3. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
    4. Li, G.C. & Huang, G.H. & Lin, Q.G. & Zhang, X.D. & Tan, Q. & Chen, Y.M., 2011. "Development of a GHG-mitigation oriented inexact dynamic model for regional energy system management," Energy, Elsevier, vol. 36(5), pages 3388-3398.
    5. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Gong, Xinglong, 2020. "Risk-based agricultural water allocation under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 233(C).
    6. Fernández-Blanco, Ricardo & Arroyo, José M. & Alguacil, Natalia, 2014. "Consumer payment minimization under uniform pricing: A mixed-integer linear programming approach," Applied Energy, Elsevier, vol. 114(C), pages 676-686.
    7. Wang, Xingwei & Cai, Yanpeng & Chen, Jiajun & Dai, Chao, 2013. "A grey-forecasting interval-parameter mixed-integer programming approach for integrated electric-environmental management–A case study of Beijing," Energy, Elsevier, vol. 63(C), pages 334-344.
    8. Tan, Raymond R., 2011. "A general source-sink model with inoperability constraints for robust energy sector planning," Applied Energy, Elsevier, vol. 88(11), pages 3759-3764.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    2. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    3. Chen, C. & Li, Y.P. & Huang, G.H., 2016. "Interval-fuzzy municipal-scale energy model for identification of optimal strategies for energy management – A case study of Tianjin, China," Renewable Energy, Elsevier, vol. 86(C), pages 1161-1177.
    4. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "Planning regional energy system in association with greenhouse gas mitigation under uncertainty," Applied Energy, Elsevier, vol. 88(3), pages 599-611, March.
    5. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    6. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    7. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    8. Dong, C. & Huang, G.H. & Cai, Y.P. & Xu, Y., 2011. "An interval-parameter minimax regret programming approach for power management systems planning under uncertainty," Applied Energy, Elsevier, vol. 88(8), pages 2835-2845, August.
    9. Piao, M.J. & Li, Y.P. & Huang, G.H. & Nie, S., 2015. "Risk analysis for Shanghai's electric power system under multiple uncertainties," Energy, Elsevier, vol. 87(C), pages 104-119.
    10. Li, Y.P. & Huang, G.H. & Nie, S.L. & Qin, X.S., 2007. "ITCLP: An inexact two-stage chance-constrained program for planning waste management systems," Resources, Conservation & Recycling, Elsevier, vol. 49(3), pages 284-307.
    11. Lin, Q.G. & Huang, G.H. & Bass, B. & Qin, X.S., 2009. "IFTEM: An interval-fuzzy two-stage stochastic optimization model for regional energy systems planning under uncertainty," Energy Policy, Elsevier, vol. 37(3), pages 868-878, March.
    12. Lin, Q.G. & Huang, G.H., 2009. "A dynamic inexact energy systems planning model for supporting greenhouse-gas emission management and sustainable renewable energy development under uncertainty--A case study for the City of Waterloo,," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1836-1853, October.
    13. Lv, Y. & Yan, X.D. & Sun, W. & Gao, Z.Y., 2015. "A risk-based method for planning of bus–subway corridor evacuation under hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 188-199.
    14. Wang, Xingwei & Cai, Yanpeng & Chen, Jiajun & Dai, Chao, 2013. "A grey-forecasting interval-parameter mixed-integer programming approach for integrated electric-environmental management–A case study of Beijing," Energy, Elsevier, vol. 63(C), pages 334-344.
    15. Ye Liu & Guohe Huang & Yanpeng Cai & Cong Dong, 2011. "An Inexact Mix-Integer Two-Stage Linear Programming Model for Supporting the Management of a Low-Carbon Energy System in China," Energies, MDPI, vol. 4(10), pages 1-30, October.
    16. Hu, Qing & Huang, Guohe & Cai, Yanpeng & Huang, Ying, 2011. "Feasibility-based inexact fuzzy programming for electric power generation systems planning under dual uncertainties," Applied Energy, Elsevier, vol. 88(12), pages 4642-4654.
    17. Li, G.C. & Huang, G.H. & Lin, Q.G. & Zhang, X.D. & Tan, Q. & Chen, Y.M., 2011. "Development of a GHG-mitigation oriented inexact dynamic model for regional energy system management," Energy, Elsevier, vol. 36(5), pages 3388-3398.
    18. Zhou, Y. & Li, Y.P. & Huang, G.H., 2015. "Planning sustainable electric-power system with carbon emission abatement through CDM under uncertainty," Applied Energy, Elsevier, vol. 140(C), pages 350-364.
    19. Liu, Y. & Huang, G.H. & Cai, Y.P. & Cheng, G.H. & Niu, Y.T. & An, K., 2009. "Development of an inexact optimization model for coupled coal and power management in North China," Energy Policy, Elsevier, vol. 37(11), pages 4345-4363, November.
    20. Y. Li & G. Huang & S. Nie, 2009. "Water Resources Management and Planning under Uncertainty: an Inexact Multistage Joint-Probabilistic Programming Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2515-2538, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:8:p:2506-2516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.