IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i11p1942-d116555.html
   My bibliography  Save this article

A Stochastic Optimization Model for Carbon Mitigation Path under Demand Uncertainty of the Power Sector in Shenzhen, China

Author

Listed:
  • Guangxiao Hu

    (Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China)

  • Xiaoming Ma

    (Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
    College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China)

  • Junping Ji

    (Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China)

Abstract

In order to solve problems caused by climate change, countries around the world should work together to reduce GHG (greenhouse gas) emissions, especially CO 2 emissions. Power demand takes up the largest proportion of final energy demand in China, so the key to achieve its goal of energy-saving and emission reduction is to reduce the carbon emissions in the power sector. Taking Shenzhen as an example, this paper proposed a stochastic optimization model incorporating power demand uncertainty to plan the carbon mitigation path of power sector between 2015 and 2030. The results show that, in order to achieve the optimal path in Shenzhen’s power sector, the carbon mitigation technologies of existing coal and gas-fired power plants will be 100% implemented. Two-thirds and remaining one-third of coal-fired power plant capacities are going to be decommissioned in 2023 and 2028, respectively. Gas-fired power, distributed photovoltaic power, waste-to-energy power and CCHP (Combined Cooling, Heating, and Power) are going to expand their capacities gradually.

Suggested Citation

  • Guangxiao Hu & Xiaoming Ma & Junping Ji, 2017. "A Stochastic Optimization Model for Carbon Mitigation Path under Demand Uncertainty of the Power Sector in Shenzhen, China," Sustainability, MDPI, vol. 9(11), pages 1-12, October.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:1942-:d:116555
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/11/1942/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/11/1942/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Hao & Tang, Bao-Jun & Liao, Hua & Wei, Yi-Ming, 2016. "A multi-period power generation planning model incorporating the non-carbon external costs: A case study of China," Applied Energy, Elsevier, vol. 183(C), pages 1333-1345.
    2. Koltsaklis, Nikolaos E. & Liu, Pei & Georgiadis, Michael C., 2015. "An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response," Energy, Elsevier, vol. 82(C), pages 865-888.
    3. Rong, Aiying & Lahdelma, Risto, 2007. "CO2 emissions trading planning in combined heat and power production via multi-period stochastic optimization," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1874-1895, February.
    4. Petra Mesarić & Damira Đukec & Slavko Krajcar, 2017. "Exploring the Potential of Energy Consumers in Smart Grid Using Focus Group Methodology," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    5. Li, M.W. & Li, Y.P. & Huang, G.H., 2011. "An interval-fuzzy two-stage stochastic programming model for planning carbon dioxide trading under uncertainty," Energy, Elsevier, vol. 36(9), pages 5677-5689.
    6. Hu, Mengqi & Cho, Heejin, 2014. "A probability constrained multi-objective optimization model for CCHP system operation decision support," Applied Energy, Elsevier, vol. 116(C), pages 230-242.
    7. Xie, Y.L. & Li, Y.P. & Huang, G.H. & Li, Y.F., 2010. "An interval fixed-mix stochastic programming method for greenhouse gas mitigation in energy systems under uncertainty," Energy, Elsevier, vol. 35(12), pages 4627-4644.
    8. Chen, W.T. & Li, Y.P. & Huang, G.H. & Chen, X. & Li, Y.F., 2010. "A two-stage inexact-stochastic programming model for planning carbon dioxide emission trading under uncertainty," Applied Energy, Elsevier, vol. 87(3), pages 1033-1047, March.
    9. Jiaqi Shi & Yingrui Wang & Ruibin Fu & Jianhua Zhang, 2017. "Operating Strategy for Local-Area Energy Systems Integration Considering Uncertainty of Supply-Side and Demand-Side under Conditional Value-At-Risk Assessment," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    10. Khayyam, Hamid & Naebe, Minoo & Bab-Hadiashar, Alireza & Jamshidi, Farshid & Li, Quanxiang & Atkiss, Stephen & Buckmaster, Derek & Fox, Bronwyn, 2015. "Stochastic optimization models for energy management in carbonization process of carbon fiber production," Applied Energy, Elsevier, vol. 158(C), pages 643-655.
    11. Lee, Jui-Yuan, 2017. "A multi-period optimisation model for planning carbon sequestration retrofits in the electricity sector," Applied Energy, Elsevier, vol. 198(C), pages 12-20.
    12. Zhang, Dongjie & Liu, Pei & Ma, Linwei & LI, Zheng, 2013. "A multi-period optimization model for planning of China's power sector with consideration of carbon dioxide mitigation—The importance of continuous and stable carbon mitigation policy," Energy Policy, Elsevier, vol. 58(C), pages 319-328.
    13. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "Planning regional energy system in association with greenhouse gas mitigation under uncertainty," Applied Energy, Elsevier, vol. 88(3), pages 599-611, March.
    14. Lin, Q.G. & Huang, G.H., 2009. "Planning of energy system management and GHG-emission control in the Municipality of Beijing--An inexact-dynamic stochastic programming model," Energy Policy, Elsevier, vol. 37(11), pages 4463-4473, November.
    15. Liu, Tong & Xu, Gang & Cai, Peng & Tian, Longhu & Huang, Qili, 2011. "Development forecast of renewable energy power generation in China and its influence on the GHG control strategy of the country," Renewable Energy, Elsevier, vol. 36(4), pages 1284-1292.
    16. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Tan, Q., 2009. "Identification of optimal strategies for energy management systems planning under multiple uncertainties," Applied Energy, Elsevier, vol. 86(4), pages 480-495, April.
    17. Selosse, Sandrine & Ricci, Olivia, 2017. "Carbon capture and storage: Lessons from a storage potential and localization analysis," Applied Energy, Elsevier, vol. 188(C), pages 32-44.
    18. Cheng, Rui & Xu, Zhaofeng & Liu, Pei & Wang, Zhe & Li, Zheng & Jones, Ian, 2015. "A multi-region optimization planning model for China’s power sector," Applied Energy, Elsevier, vol. 137(C), pages 413-426.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
    2. Li, G.C. & Huang, G.H. & Lin, Q.G. & Zhang, X.D. & Tan, Q. & Chen, Y.M., 2011. "Development of a GHG-mitigation oriented inexact dynamic model for regional energy system management," Energy, Elsevier, vol. 36(5), pages 3388-3398.
    3. Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
    4. Piao, M.J. & Li, Y.P. & Huang, G.H. & Nie, S., 2015. "Risk analysis for Shanghai's electric power system under multiple uncertainties," Energy, Elsevier, vol. 87(C), pages 104-119.
    5. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    6. Chen, Hao & Tang, Bao-Jun & Liao, Hua & Wei, Yi-Ming, 2016. "A multi-period power generation planning model incorporating the non-carbon external costs: A case study of China," Applied Energy, Elsevier, vol. 183(C), pages 1333-1345.
    7. Wang, Xingwei & Cai, Yanpeng & Chen, Jiajun & Dai, Chao, 2013. "A grey-forecasting interval-parameter mixed-integer programming approach for integrated electric-environmental management–A case study of Beijing," Energy, Elsevier, vol. 63(C), pages 334-344.
    8. Zhu, Y. & Li, Y.P. & Huang, G.H., 2013. "Planning carbon emission trading for Beijing's electric power systems under dual uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 113-128.
    9. Tang, Bao-Jun & Li, Ru & Li, Xiao-Yi & Chen, Hao, 2017. "An optimal production planning model of coal-fired power industry in China: Considering the process of closing down inefficient units and developing CCS technologies," Applied Energy, Elsevier, vol. 206(C), pages 519-530.
    10. Yi, Bo-Wen & Xu, Jin-Hua & Fan, Ying, 2016. "Inter-regional power grid planning up to 2030 in China considering renewable energy development and regional pollutant control: A multi-region bottom-up optimization model," Applied Energy, Elsevier, vol. 184(C), pages 641-658.
    11. Fan, Jing-Li & Wang, Jia-Xing & Hu, Jia-Wei & Wang, Yu & Zhang, Xian, 2019. "Optimization of China’s provincial renewable energy installation plan for the 13th five-year plan based on renewable portfolio standards," Applied Energy, Elsevier, vol. 254(C).
    12. Xie, Y.L. & Li, Y.P. & Huang, G.H. & Li, Y.F., 2010. "An interval fixed-mix stochastic programming method for greenhouse gas mitigation in energy systems under uncertainty," Energy, Elsevier, vol. 35(12), pages 4627-4644.
    13. Chen, C. & Li, Y.P. & Huang, G.H. & Zhu, Y., 2012. "An inexact robust nonlinear optimization method for energy systems planning under uncertainty," Renewable Energy, Elsevier, vol. 47(C), pages 55-66.
    14. Karan, Ebrahim & Asadi, Somayeh & Ntaimo, Lewis, 2016. "A stochastic optimization approach to reduce greenhouse gas emissions from buildings and transportation," Energy, Elsevier, vol. 106(C), pages 367-377.
    15. Guan, Panbo & Huang, Guohe & Wu, Chuanbao & Wang, Linrui & Li, Chaoci & Wang, Yuanyi, 2019. "Analysis of emission taxes levying on regional electric power structure adjustment with an inexact optimization model - A case study of Zibo, China," Energy Economics, Elsevier, vol. 84(C).
    16. Jin, L. & Huang, G.H. & Fan, Y.R. & Wang, L. & Wu, T., 2015. "A pseudo-optimal inexact stochastic interval T2 fuzzy sets approach for energy and environmental systems planning under uncertainty: A case study for Xiamen City of China," Applied Energy, Elsevier, vol. 138(C), pages 71-90.
    17. Jin, S.W. & Li, Y.P. & Nie, S. & Sun, J., 2017. "The potential role of carbon capture and storage technology in sustainable electric-power systems under multiple uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 467-480.
    18. Chen, C. & Li, Y.P. & Huang, G.H., 2013. "An inexact robust optimization method for supporting carbon dioxide emissions management in regional electric-power systems," Energy Economics, Elsevier, vol. 40(C), pages 441-456.
    19. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    20. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:1942-:d:116555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.