IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v126y2014icp69-77.html
   My bibliography  Save this article

A hybrid solar chemical looping combustion system with a high solar share

Author

Listed:
  • Jafarian, Mehdi
  • Arjomandi, Maziar
  • Nathan, Graham J.

Abstract

A novel hybrid solar chemical looping combustion (Hy-Sol-CLC) is presented, in which the oxygen carrier particles in a CLC system are employed to provide thermal energy storage for concentrated solar thermal energy. This hybrid aims to take advantage of key features of a chemical looping combustion (CLC) system that are desirable for solar energy systems, notably their inherent chemical and sensible energy storage systems, the relatively low temperature of the “fuel” reactor (to which the concentrated solar thermal energy is added in a hybrid) relative to that of the final temperature of the product gas and the potential to operate the fuel reactor at a different pressure to the heated gas stream. By this approach, it is aimed to achieve high efficiency of the solar energy, infrastructure sharing, economic synergy, base load power generation and a high solar fraction of the total energy. In the proposed Hy-Sol-CLC system, a cavity solar receiver has been chosen for fuel reactor while for the storage of the oxygen carrier particles two reservoirs have been added to a conventional CLC. A heat exchanger is also proposed to provide independent control of the temperatures of the storage reservoirs from those of solar fuel and air reactors. The system is simulated using Aspen Plus software for the average diurnal profile of normal irradiance for Port Augusta, South Australia. The operating temperature of the fuel reactor, solar absorption efficiency, solar share, fraction of the solar thermal energy stored within the solar reactor, the fractions of sensible and chemical storages and the system exergy efficiency are reported. The calculations show that a total solar share of around 60% can be achieved. Also reported is the sensitivity to the effects of key operating parameters, i.e. reservoir temperature, molar ratio of oxygen carrier particles to fuel, solar fuel reactor operating temperature and solar collector field concentration ratio.

Suggested Citation

  • Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2014. "A hybrid solar chemical looping combustion system with a high solar share," Applied Energy, Elsevier, vol. 126(C), pages 69-77.
  • Handle: RePEc:eee:appene:v:126:y:2014:i:c:p:69-77
    DOI: 10.1016/j.apenergy.2014.03.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914003110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.03.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steinfeld, A. & Larson, C. & Palumbo, R. & Foley, M., 1996. "Thermodynamic analysis of the co-production of zinc and synthesis gas using solar process heat," Energy, Elsevier, vol. 21(3), pages 205-222.
    2. Yazdanpanah, M.M. & Forret, A. & Gauthier, T. & Delebarre, A., 2014. "Modeling of CH4 combustion with NiO/NiAl2O4 in a 10kWth CLC pilot plant," Applied Energy, Elsevier, vol. 113(C), pages 1933-1944.
    3. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2013. "A hybrid solar and chemical looping combustion system for solar thermal energy storage," Applied Energy, Elsevier, vol. 103(C), pages 671-678.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yiyuan & Zhu, Qunzhi & Zhang, Tao & Yan, Xuefeng & Duan, Rui, 2020. "Analysis of chemical-looping hydrogen production and power generation system driven by solar energy," Renewable Energy, Elsevier, vol. 154(C), pages 863-874.
    2. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2014. "The energetic performance of a novel hybrid solar thermal & chemical looping combustion plant," Applied Energy, Elsevier, vol. 132(C), pages 74-85.
    3. Kalogirou, Soteris A. & Karellas, Sotirios & Badescu, Viorel & Braimakis, Konstantinos, 2016. "Exergy analysis on solar thermal systems: A better understanding of their sustainability," Renewable Energy, Elsevier, vol. 85(C), pages 1328-1333.
    4. Jiang, Qiongqiong & Zhang, Hao & Deng, Ya'nan & Kang, Qilan & Hong, Hui & Jin, Hongguang, 2018. "Properties and reactivity of LaCuxNi1−xO3 perovskites in chemical-looping combustion for mid-temperature solar-thermal energy storage," Applied Energy, Elsevier, vol. 228(C), pages 1506-1514.
    5. Sarafraz, M.M. & Jafarian, M. & Arjomandi, M. & Nathan, G.J., 2017. "Potential use of liquid metal oxides for chemical looping gasification: A thermodynamic assessment," Applied Energy, Elsevier, vol. 195(C), pages 702-712.
    6. Silakhori, Mahyar & Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2019. "The energetic performance of a liquid chemical looping cycle with solar thermal energy storage," Energy, Elsevier, vol. 170(C), pages 93-101.
    7. Rodat, Sylvain & Abanades, Stéphane & Boujjat, Houssame & Chuayboon, Srirat, 2020. "On the path toward day and night continuous solar high temperature thermochemical processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    9. M. M. Sarafraz & Mohammad Reza Safaei & M. Jafarian & Marjan Goodarzi & M. Arjomandi, 2019. "High Quality Syngas Production with Supercritical Biomass Gasification Integrated with a Water–Gas Shift Reactor," Energies, MDPI, vol. 12(13), pages 1-14, July.
    10. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2017. "Thermodynamic potential of molten copper oxide for high temperature solar energy storage and oxygen production," Applied Energy, Elsevier, vol. 201(C), pages 69-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2017. "Thermodynamic potential of molten copper oxide for high temperature solar energy storage and oxygen production," Applied Energy, Elsevier, vol. 201(C), pages 69-83.
    2. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2014. "The energetic performance of a novel hybrid solar thermal & chemical looping combustion plant," Applied Energy, Elsevier, vol. 132(C), pages 74-85.
    3. Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
    4. Michalsky, Ronald & Parman, Bryon J. & Amanor-Boadu, Vincent & Pfromm, Peter H., 2012. "Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses," Energy, Elsevier, vol. 42(1), pages 251-260.
    5. Prabu, V., 2015. "Integration of in-situ CO2-oxy coal gasification with advanced power generating systems performing in a chemical looping approach of clean combustion," Applied Energy, Elsevier, vol. 140(C), pages 1-13.
    6. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2013. "A hybrid solar and chemical looping combustion system for solar thermal energy storage," Applied Energy, Elsevier, vol. 103(C), pages 671-678.
    7. Nathan, G.J. & Battye, D.L. & Ashman, P.J., 2014. "Economic evaluation of a novel fuel-saver hybrid combining a solar receiver with a combustor for a solar power tower," Applied Energy, Elsevier, vol. 113(C), pages 1235-1243.
    8. Sarafraz, M.M. & Jafarian, M. & Arjomandi, M. & Nathan, G.J., 2017. "Potential use of liquid metal oxides for chemical looping gasification: A thermodynamic assessment," Applied Energy, Elsevier, vol. 195(C), pages 702-712.
    9. Zhang, Xiaosong & Jin, Hongguang, 2013. "Thermodynamic analysis of chemical-looping hydrogen generation," Applied Energy, Elsevier, vol. 112(C), pages 800-807.
    10. Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
    11. Yu, Tao & Yuan, Qinyuan & Lu, Jianfeng & Ding, Jing & Lu, Yanling, 2017. "Thermochemical storage performances of methane reforming with carbon dioxide in tubular and semi-cavity reactors heated by a solar dish system," Applied Energy, Elsevier, vol. 185(P2), pages 1994-2004.
    12. Halmann, M. & Frei, A. & Steinfeld, A., 2002. "Thermo-neutral production of metals and hydrogen or methanol by the combined reduction of the oxides of zinc or iron with partial oxidation of hydrocarbons," Energy, Elsevier, vol. 27(12), pages 1069-1084.
    13. Silakhori, Mahyar & Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2019. "The energetic performance of a liquid chemical looping cycle with solar thermal energy storage," Energy, Elsevier, vol. 170(C), pages 93-101.
    14. Chinnici, A. & Nathan, G.J. & Dally, B.B., 2018. "Experimental demonstration of the hybrid solar receiver combustor," Applied Energy, Elsevier, vol. 224(C), pages 426-437.
    15. Jiang, Qiongqiong & Zhang, Hao & Deng, Ya'nan & Kang, Qilan & Hong, Hui & Jin, Hongguang, 2018. "Properties and reactivity of LaCuxNi1−xO3 perovskites in chemical-looping combustion for mid-temperature solar-thermal energy storage," Applied Energy, Elsevier, vol. 228(C), pages 1506-1514.
    16. Adinberg, Roman & Epstein, Michael, 2004. "Experimental study of solar reactors for carboreduction of zinc oxide," Energy, Elsevier, vol. 29(5), pages 757-769.
    17. Liu, Yinan & Deng, Shuai & Zhao, Ruikai & He, Junnan & Zhao, Li, 2017. "Energy-saving pathway exploration of CCS integrated with solar energy: A review of innovative concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 652-669.
    18. Yadav, Deepak & Banerjee, Rangan, 2016. "A review of solar thermochemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 497-532.
    19. Gokon, Nobuyuki & Yamaguchi, Tomoya & Kodama, Tatsuya, 2016. "Cyclic thermal storage/discharge performances of a hypereutectic Cu-Si alloy under vacuum for solar thermochemical process," Energy, Elsevier, vol. 113(C), pages 1099-1108.
    20. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:126:y:2014:i:c:p:69-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.