A hybrid solar chemical looping combustion system with a high solar share
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2014.03.071
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2013. "A hybrid solar and chemical looping combustion system for solar thermal energy storage," Applied Energy, Elsevier, vol. 103(C), pages 671-678.
- Steinfeld, A. & Larson, C. & Palumbo, R. & Foley, M., 1996. "Thermodynamic analysis of the co-production of zinc and synthesis gas using solar process heat," Energy, Elsevier, vol. 21(3), pages 205-222.
- Yazdanpanah, M.M. & Forret, A. & Gauthier, T. & Delebarre, A., 2014. "Modeling of CH4 combustion with NiO/NiAl2O4 in a 10kWth CLC pilot plant," Applied Energy, Elsevier, vol. 113(C), pages 1933-1944.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Yiyuan & Zhu, Qunzhi & Zhang, Tao & Yan, Xuefeng & Duan, Rui, 2020. "Analysis of chemical-looping hydrogen production and power generation system driven by solar energy," Renewable Energy, Elsevier, vol. 154(C), pages 863-874.
- Kalogirou, Soteris A. & Karellas, Sotirios & Badescu, Viorel & Braimakis, Konstantinos, 2016. "Exergy analysis on solar thermal systems: A better understanding of their sustainability," Renewable Energy, Elsevier, vol. 85(C), pages 1328-1333.
- Silakhori, Mahyar & Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2019. "The energetic performance of a liquid chemical looping cycle with solar thermal energy storage," Energy, Elsevier, vol. 170(C), pages 93-101.
- Rodat, Sylvain & Abanades, Stéphane & Boujjat, Houssame & Chuayboon, Srirat, 2020. "On the path toward day and night continuous solar high temperature thermochemical processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- M. M. Sarafraz & Mohammad Reza Safaei & M. Jafarian & Marjan Goodarzi & M. Arjomandi, 2019. "High Quality Syngas Production with Supercritical Biomass Gasification Integrated with a Water–Gas Shift Reactor," Energies, MDPI, vol. 12(13), pages 1-14, July.
- Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2014. "The energetic performance of a novel hybrid solar thermal & chemical looping combustion plant," Applied Energy, Elsevier, vol. 132(C), pages 74-85.
- Jiang, Qiongqiong & Zhang, Hao & Deng, Ya'nan & Kang, Qilan & Hong, Hui & Jin, Hongguang, 2018. "Properties and reactivity of LaCuxNi1−xO3 perovskites in chemical-looping combustion for mid-temperature solar-thermal energy storage," Applied Energy, Elsevier, vol. 228(C), pages 1506-1514.
- Sarafraz, M.M. & Jafarian, M. & Arjomandi, M. & Nathan, G.J., 2017. "Potential use of liquid metal oxides for chemical looping gasification: A thermodynamic assessment," Applied Energy, Elsevier, vol. 195(C), pages 702-712.
- Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
- Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2017. "Thermodynamic potential of molten copper oxide for high temperature solar energy storage and oxygen production," Applied Energy, Elsevier, vol. 201(C), pages 69-83.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2017. "Thermodynamic potential of molten copper oxide for high temperature solar energy storage and oxygen production," Applied Energy, Elsevier, vol. 201(C), pages 69-83.
- Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2014. "The energetic performance of a novel hybrid solar thermal & chemical looping combustion plant," Applied Energy, Elsevier, vol. 132(C), pages 74-85.
- Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
- Michalsky, Ronald & Parman, Bryon J. & Amanor-Boadu, Vincent & Pfromm, Peter H., 2012. "Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses," Energy, Elsevier, vol. 42(1), pages 251-260.
- Prabu, V., 2015. "Integration of in-situ CO2-oxy coal gasification with advanced power generating systems performing in a chemical looping approach of clean combustion," Applied Energy, Elsevier, vol. 140(C), pages 1-13.
- Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2013. "A hybrid solar and chemical looping combustion system for solar thermal energy storage," Applied Energy, Elsevier, vol. 103(C), pages 671-678.
- Nathan, G.J. & Battye, D.L. & Ashman, P.J., 2014. "Economic evaluation of a novel fuel-saver hybrid combining a solar receiver with a combustor for a solar power tower," Applied Energy, Elsevier, vol. 113(C), pages 1235-1243.
- Sarafraz, M.M. & Jafarian, M. & Arjomandi, M. & Nathan, G.J., 2017. "Potential use of liquid metal oxides for chemical looping gasification: A thermodynamic assessment," Applied Energy, Elsevier, vol. 195(C), pages 702-712.
- Zhang, Xiaosong & Jin, Hongguang, 2013. "Thermodynamic analysis of chemical-looping hydrogen generation," Applied Energy, Elsevier, vol. 112(C), pages 800-807.
- Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
- Adinberg, Roman & Epstein, Michael, 2004. "Experimental study of solar reactors for carboreduction of zinc oxide," Energy, Elsevier, vol. 29(5), pages 757-769.
- Yu, Tao & Yuan, Qinyuan & Lu, Jianfeng & Ding, Jing & Lu, Yanling, 2017. "Thermochemical storage performances of methane reforming with carbon dioxide in tubular and semi-cavity reactors heated by a solar dish system," Applied Energy, Elsevier, vol. 185(P2), pages 1994-2004.
- Liu, Yinan & Deng, Shuai & Zhao, Ruikai & He, Junnan & Zhao, Li, 2017. "Energy-saving pathway exploration of CCS integrated with solar energy: A review of innovative concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 652-669.
- Yadav, Deepak & Banerjee, Rangan, 2016. "A review of solar thermochemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 497-532.
- Halmann, M. & Frei, A. & Steinfeld, A., 2002. "Thermo-neutral production of metals and hydrogen or methanol by the combined reduction of the oxides of zinc or iron with partial oxidation of hydrocarbons," Energy, Elsevier, vol. 27(12), pages 1069-1084.
- Gokon, Nobuyuki & Yamaguchi, Tomoya & Kodama, Tatsuya, 2016. "Cyclic thermal storage/discharge performances of a hypereutectic Cu-Si alloy under vacuum for solar thermochemical process," Energy, Elsevier, vol. 113(C), pages 1099-1108.
- Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
- Albrecht, Kevin J. & Jackson, Gregory S. & Braun, Robert J., 2016. "Thermodynamically consistent modeling of redox-stable perovskite oxides for thermochemical energy conversion and storage," Applied Energy, Elsevier, vol. 165(C), pages 285-296.
- Chang, F.C. & Liao, P.H. & Tsai, C.K. & Hsiao, M.C. & Paul Wang, H., 2014. "Chemical-looping combustion of syngas with nano CuO–NiO on chabazite," Applied Energy, Elsevier, vol. 113(C), pages 1731-1736.
- Silakhori, Mahyar & Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2019. "The energetic performance of a liquid chemical looping cycle with solar thermal energy storage," Energy, Elsevier, vol. 170(C), pages 93-101.
More about this item
Keywords
Hybrid systems; Solar thermal energy; Chemical looping combustion; Energy storage;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:126:y:2014:i:c:p:69-77. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.