IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v77y2017icp652-669.html
   My bibliography  Save this article

Energy-saving pathway exploration of CCS integrated with solar energy: A review of innovative concepts

Author

Listed:
  • Liu, Yinan
  • Deng, Shuai
  • Zhao, Ruikai
  • He, Junnan
  • Zhao, Li

Abstract

Traditional technologies of carbon capture and storage (CCS) are being focused on capturing CO2 in large-scale demonstrations, which has been proved to result in the high cost and energy penalty. Meanwhile, typical innovative measures, commonly defined as the second generation CCS technologies, elude conventional ones by integrating with solar energy and thus contributing to a more energy-efficient conversion of CO2. However, few reviews pay attention to thermodynamic processes and parameters of these novel technologies, and there is a lack of systematic evaluation and comparison among them. This paper firstly presents a guided tour on the state-of-art of typical and innovative CCS technologies integrated with solar energy. An overview on thermodynamic processes, including chemical reactions, operating conditions and efficiency indexes of five typical technologies is presented so that the current development level can be clarified. Since the high energy requirement and related operating cost are the main barriers to the application of existing CCS technologies, the minimum work and second-law efficiency are applied as the main indicators in the second part of this paper which relates to performance evaluation. In addition, the performance windows for innovative technologies are illustrated for the comparison of technological maturity. The results show that energy requirement of innovative CCS technologies from the flue gas is avg. 100–200kJ/mol CO2 and the second-law efficiency of them is only 5–12%. Therefore, the maturity and popularity of these novel technologies are still relatively low. But the well-integrated systems and diversified output of these technologies can benefit existing energy infrastructures in a long period.

Suggested Citation

  • Liu, Yinan & Deng, Shuai & Zhao, Ruikai & He, Junnan & Zhao, Li, 2017. "Energy-saving pathway exploration of CCS integrated with solar energy: A review of innovative concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 652-669.
  • Handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:652-669
    DOI: 10.1016/j.rser.2017.04.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117305336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.04.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bailera, Manuel & Lisbona, Pilar & Romeo, Luis M. & Espatolero, Sergio, 2017. "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 292-312.
    2. Udomsirichakorn, Jakkapong & Salam, P. Abdul, 2014. "Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 565-579.
    3. Tajima, Hideo & Yamasaki, Akihiro & Kiyono, Fumio, 2004. "Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation," Energy, Elsevier, vol. 29(11), pages 1713-1729.
    4. Lindqvist, Karl & Jordal, Kristin & Haugen, Geir & Hoff, Karl Anders & Anantharaman, Rahul, 2014. "Integration aspects of reactive absorption for post-combustion CO2 capture from NGCC (natural gas combined cycle) power plants," Energy, Elsevier, vol. 78(C), pages 758-767.
    5. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    6. Spinelli, Maurizio & Peltola, Petteri & Bischi, Aldo & Ritvanen, Jouni & Hyppänen, Timo & Romano, Matteo C., 2016. "Process integration of chemical looping combustion with oxygen uncoupling in a coal-fired power plant," Energy, Elsevier, vol. 103(C), pages 646-659.
    7. Chen, Huichao & Zhang, Pingping & Duan, Yufeng & Zhao, Changsui, 2016. "Reactivity enhancement of calcium based sorbents by doped with metal oxides through the sol–gel process," Applied Energy, Elsevier, vol. 162(C), pages 390-400.
    8. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2013. "A hybrid solar and chemical looping combustion system for solar thermal energy storage," Applied Energy, Elsevier, vol. 103(C), pages 671-678.
    9. de_Richter, Renaud Kiesgen & Ming, Tingzhen & Caillol, Sylvain, 2013. "Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 82-106.
    10. Zhao, Ruikai & Deng, Shuai & Liu, Yinan & Zhao, Qing & He, Junnan & Zhao, Li, 2017. "Carbon pump: Fundamental theory and applications," Energy, Elsevier, vol. 119(C), pages 1131-1143.
    11. Olajire, Abass A., 2010. "CO2 capture and separation technologies for end-of-pipe applications – A review," Energy, Elsevier, vol. 35(6), pages 2610-2628.
    12. Pak, Pyong Sik & Lee, Young Duk & Ahn, Kook Young, 2009. "Characteristics and economic evaluation of a CO2-capturing repowering system with oxy-fuel combustion for utilizing exhaust gas of molten carbonate fuel cell (MCFC)," Energy, Elsevier, vol. 34(11), pages 1903-1909.
    13. Ping Wang & Nicholas Means & Dushyant Shekhawat & David Berry & Mehrdad Massoudi, 2015. "Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review," Energies, MDPI, vol. 8(10), pages 1-31, September.
    14. Ganesh, Ibram, 2014. "Conversion of carbon dioxide into methanol – a potential liquid fuel: Fundamental challenges and opportunities (a review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 221-257.
    15. Matthews, L. & Lipiński, W., 2012. "Thermodynamic analysis of solar thermochemical CO2 capture via carbonation/calcination cycle with heat recovery," Energy, Elsevier, vol. 45(1), pages 900-907.
    16. Gabriele Centi & Siglinda Perathoner, 2011. "CO 2 ‐based energy vectors for the storage of solar energy," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 1(1), pages 21-35, March.
    17. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2014. "The energetic performance of a novel hybrid solar thermal & chemical looping combustion plant," Applied Energy, Elsevier, vol. 132(C), pages 74-85.
    18. Shakerian, Farid & Kim, Ki-Hyun & Szulejko, Jan E. & Park, Jae-Woo, 2015. "A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 148(C), pages 10-22.
    19. Goto, Kazuya & Yogo, Katsunori & Higashii, Takayuki, 2013. "A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture," Applied Energy, Elsevier, vol. 111(C), pages 710-720.
    20. Wee, Jung-Ho, 2014. "Carbon dioxide emission reduction using molten carbonate fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 178-191.
    21. Nikulshina, V. & Hirsch, D. & Mazzotti, M. & Steinfeld, A., 2006. "CO2 capture from air and co-production of H2 via the Ca(OH)2–CaCO3 cycle using concentrated solar power–Thermodynamic analysis," Energy, Elsevier, vol. 31(12), pages 1715-1725.
    22. Bounaceur, Roda & Lape, Nancy & Roizard, Denis & Vallieres, Cécile & Favre, Eric, 2006. "Membrane processes for post-combustion carbon dioxide capture: A parametric study," Energy, Elsevier, vol. 31(14), pages 2556-2570.
    23. Tomita, Shuhei & Akatsu, Satoru & Ohmura, Ryo, 2015. "Experiments and thermodynamic simulations for continuous separation of CO2 from CH4+CO2 gas mixture utilizing hydrate formation," Applied Energy, Elsevier, vol. 146(C), pages 104-110.
    24. Perejón, Antonio & Romeo, Luis M. & Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Valverde, Jose Manuel, 2016. "The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior," Applied Energy, Elsevier, vol. 162(C), pages 787-807.
    25. Jörg Petrasch & James Klausner, 2012. "Integrated solar thermochemical cycles for energy storage and fuel production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(3), pages 347-361, November.
    26. Rahman, Farahiyah Abdul & Aziz, Md Maniruzzaman A. & Saidur, R. & Bakar, Wan Azelee Wan Abu & Hainin, M.R & Putrajaya, Ramadhansyah & Hassan, Norhidayah Abdul, 2017. "Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 112-126.
    27. Kaneco, Satoshi & Kurimoto, Hidekazu & Shimizu, Yasuhiro & Ohta, Kiyohisa & Mizuno, Takayuki, 1999. "Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid CO2," Energy, Elsevier, vol. 24(1), pages 21-30.
    28. Page, S.C. & Williamson, A.G. & Mason, I.G., 2009. "Carbon capture and storage: Fundamental thermodynamics and current technology," Energy Policy, Elsevier, vol. 37(9), pages 3314-3324, September.
    29. David Keith & Minh Ha-Duong & Joshua K. Stolaroff, 2006. "Climate strategy with CO2 capture from the air," Post-Print halshs-00003926, HAL.
    30. Youinou, Gilles J., 2016. "Powering sustainable low-carbon economies: Some facts and figures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1626-1633.
    31. Xu, Chun-Gang & Zhang, Shao-Hong & Cai, Jing & Chen, Zhao-Yang & Li, Xiao-Sen, 2013. "CO2 (carbon dioxide) separation from CO2–H2 (hydrogen) gas mixtures by gas hydrates in TBAB (tetra-n-butyl ammonium bromide) solution and Raman spectroscopic analysis," Energy, Elsevier, vol. 59(C), pages 719-725.
    32. Xia, Zhi-Ming & Li, Xiao-Sen & Chen, Zhao-Yang & Li, Gang & Yan, Ke-Feng & Xu, Chun-Gang & Lv, Qiu-Nan & Cai, Jing, 2016. "Hydrate-based CO2 capture and CH4 purification from simulated biogas with synergic additives based on gas solvent," Applied Energy, Elsevier, vol. 162(C), pages 1153-1159.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    2. Li, Shuangjun & Yuan, Xiangzhou & Deng, Shuai & Zhao, Li & Lee, Ki Bong, 2021. "A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Jun-bin Wang & Lufei Huang, 2021. "A Game-Theoretic Analytical Approach for Fostering Energy-Saving Innovation in the Electric Vehicle Supply Chain," SAGE Open, , vol. 11(2), pages 21582440211, June.
    4. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Yi Yuan & Yingjie Li & Jianli Zhao, 2018. "Development on Thermochemical Energy Storage Based on CaO-Based Materials: A Review," Sustainability, MDPI, vol. 10(8), pages 1-24, July.
    6. Song, Chunfeng & Liu, Qingling & Deng, Shuai & Li, Hailong & Kitamura, Yutaka, 2019. "Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 265-278.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Ruikai & Deng, Shuai & Liu, Yinan & Zhao, Qing & He, Junnan & Zhao, Li, 2017. "Carbon pump: Fundamental theory and applications," Energy, Elsevier, vol. 119(C), pages 1131-1143.
    2. Sa, Jeong-Hoon & Sum, Amadeu K., 2019. "Promoting gas hydrate formation with ice-nucleating additives for hydrate-based applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
    4. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    5. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Foroutan, Shima & Mohsenzade, Hanie & Dashti, Ali & Roosta, Hadi, 2021. "New insights into the evaluation of kinetic hydrate inhibitors and energy consumption in rocking and stirred cells," Energy, Elsevier, vol. 218(C).
    7. Li, Ze-Yu & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen & Xu, Chun-Gang & Yan, Ran, 2019. "The plateau effects and crystal transition study in Tetrahydrofuran (THF)/CO2/H2 hydrate formation processes," Applied Energy, Elsevier, vol. 238(C), pages 195-201.
    8. Sreenivasulu, B. & Gayatri, D.V. & Sreedhar, I. & Raghavan, K.V., 2015. "A journey into the process and engineering aspects of carbon capture technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1324-1350.
    9. Sarafraz, M.M. & Jafarian, M. & Arjomandi, M. & Nathan, G.J., 2017. "Potential use of liquid metal oxides for chemical looping gasification: A thermodynamic assessment," Applied Energy, Elsevier, vol. 195(C), pages 702-712.
    10. Das, Sreejon & Wan Daud, W.M.A., 2014. "Photocatalytic CO2 transformation into fuel: A review on advances in photocatalyst and photoreactor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 765-805.
    11. Wang, Ke & Zhou, Zhongyun & Zhao, Pengfei & Yin, Zeguang & Su, Zhen & Sun, Ji, 2016. "Synthesis of a highly efficient Li4SiO4 ceramic modified with a gluconic acid-based carbon coating for high-temperature CO2 capture," Applied Energy, Elsevier, vol. 183(C), pages 1418-1427.
    12. Zheng, Junjie & Zhang, Peng & Linga, Praveen, 2017. "Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures," Applied Energy, Elsevier, vol. 194(C), pages 267-278.
    13. Alvarez Rivero, M. & Rodrigues, D. & Pinheiro, C.I.C. & Cardoso, J.P. & Mendes, L.F., 2022. "Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Wang, Meihong & Joel, Atuman S. & Ramshaw, Colin & Eimer, Dag & Musa, Nuhu M., 2015. "Process intensification for post-combustion CO2 capture with chemical absorption: A critical review," Applied Energy, Elsevier, vol. 158(C), pages 275-291.
    15. Sreedhar, I. & Vaidhiswaran, R. & Kamani, Bansi. M. & Venugopal, A., 2017. "Process and engineering trends in membrane based carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 659-684.
    16. Zhang, Qiyan & Liu, Yanxing & Cao, Yuhao & Li, Zhengyuan & Hou, Jiachen & Gou, Xiang, 2023. "Parametric study and optimization of MEA-based carbon capture for a coal and biomass co-firing power plant," Renewable Energy, Elsevier, vol. 205(C), pages 838-850.
    17. Lee, Yohan & Lee, Dongyoung & Lee, Jong-Won & Seo, Yongwon, 2016. "Enclathration of CO2 as a co-guest of structure H hydrates and its implications for CO2 capture and sequestration," Applied Energy, Elsevier, vol. 163(C), pages 51-59.
    18. Yang, Mingjun & Jing, Wen & Zhao, Jiafei & Ling, Zheng & Song, Yongchen, 2016. "Promotion of hydrate-based CO2 capture from flue gas by additive mixtures (THF (tetrahydrofuran) + TBAB (tetra-n-butyl ammonium bromide))," Energy, Elsevier, vol. 106(C), pages 546-553.
    19. Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.
    20. Li, Zheng & Zhong, Dong-Liang & Lu, Yi-Yu & Yan, Jin & Zou, Zhen-Lin, 2017. "Preferential enclathration of CO2 into tetra-n-butyl phosphonium bromide semiclathrate hydrate in moderate operating conditions: Application for CO2 capture from shale gas," Applied Energy, Elsevier, vol. 199(C), pages 370-381.

    More about this item

    Keywords

    CO2 capture; Solar energy; CCS; Renewable energy;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:652-669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.