IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i13p2591-d245854.html
   My bibliography  Save this article

High Quality Syngas Production with Supercritical Biomass Gasification Integrated with a Water–Gas Shift Reactor

Author

Listed:
  • M. M. Sarafraz

    (School of Mechanical Engineering, University of Adelaide, Adelaide, Australia)

  • Mohammad Reza Safaei

    (Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
    Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam)

  • M. Jafarian

    (School of Mechanical Engineering, University of Adelaide, Adelaide, Australia)

  • Marjan Goodarzi

    (Department of Mechanical Engineering, Lamar University, Beaumont, TX 77705, USA
    Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam)

  • M. Arjomandi

    (School of Mechanical Engineering, University of Adelaide, Adelaide, Australia)

Abstract

A thermodynamic assessment is conducted for a new configuration of a supercritical water gasification plant with a water–gas shift reactor. The proposed configuration offers the potential for the production of syngas at different H 2 :CO ratios for various applications such as the Fischer–Tropsch process or fuel cells, and it is a path for addressing the common challenges associated with conventional gasification plants such as nitrogen dilution and ash separation. The proposed concept consists of two reactors, R 1 and R 2 , where the carbon containing fuel is gasified (in reactor R 1 ) and in reactor R 2 , the quality of the syngas (H 2 :CO ratio) is substantially improved. Reactor R 1 is a supercritical water gasifier and reactor R 2 is a water–gas shift reactor. The proposed concept was modelled using the Gibbs minimization method with HSC chemistry software. Our results show that the supercritical water to fuel ratio (SCW/C) is a key parameter for determining the quality of syngas (molar ratio of H 2 :CO) and the carbon conversion reaches 100%, when the SWC/C ratio ranges between two and 2.5 at 500–1000 °C.

Suggested Citation

  • M. M. Sarafraz & Mohammad Reza Safaei & M. Jafarian & Marjan Goodarzi & M. Arjomandi, 2019. "High Quality Syngas Production with Supercritical Biomass Gasification Integrated with a Water–Gas Shift Reactor," Energies, MDPI, vol. 12(13), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2591-:d:245854
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/13/2591/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/13/2591/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patra, Tapas Kumar & Sheth, Pratik N., 2015. "Biomass gasification models for downdraft gasifier: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 583-593.
    2. Chan, Fan Liang & Tanksale, Akshat, 2014. "Review of recent developments in Ni-based catalysts for biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 428-438.
    3. Zhai, Yunbo & Peng, Chuan & Xu, Bibo & Wang, Tengfei & Li, Caiting & Zeng, Guangming & Zhu, Yun, 2017. "Hydrothermal carbonisation of sewage sludge for char production with different waste biomass: Effects of reaction temperature and energy recycling," Energy, Elsevier, vol. 127(C), pages 167-174.
    4. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2013. "A hybrid solar and chemical looping combustion system for solar thermal energy storage," Applied Energy, Elsevier, vol. 103(C), pages 671-678.
    5. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2014. "A hybrid solar chemical looping combustion system with a high solar share," Applied Energy, Elsevier, vol. 126(C), pages 69-77.
    6. Guo, Y. & Wang, S.Z. & Xu, D.H. & Gong, Y.M. & Ma, H.H. & Tang, X.Y., 2010. "Review of catalytic supercritical water gasification for hydrogen production from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 334-343, January.
    7. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2014. "The energetic performance of a novel hybrid solar thermal & chemical looping combustion plant," Applied Energy, Elsevier, vol. 132(C), pages 74-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahman, MD Mashiur & Henriksen, Ulrik Birk & Ahrenfeldt, Jesper & Arnavat, Maria Puig, 2020. "Design, construction and operation of a low-tar biomass (LTB) gasifier for power applications," Energy, Elsevier, vol. 204(C).
    2. Liu, Zhibin & Zhao, Chuankai & Cai, Longhao & Long, Xinman, 2022. "Steady state modelling of steam-gasification of biomass for H2-rich syngas production," Energy, Elsevier, vol. 238(PA).
    3. Jacek Grams, 2022. "Upgrading of Lignocellulosic Biomass to Hydrogen-Rich Gas," Energies, MDPI, vol. 16(1), pages 1-5, December.
    4. Liu, Shanke & Yang, Yan & Yu, Lijun & Cao, Yu & Liu, Xinyi & Yao, Anqi & Cao, Yaping, 2023. "Self-heating optimization of integrated system of supercritical water gasification of biomass for power generation using artificial neural network combined with process simulation," Energy, Elsevier, vol. 272(C).
    5. Odi Fawwaz Alrebei & Philip Bowen & Agustin Valera Medina, 2020. "Parametric Study of Various Thermodynamic Cycles for the Use of Unconventional Blends," Energies, MDPI, vol. 13(18), pages 1-16, September.
    6. Sanaye, Sepehr & Alizadeh, Pouria & Yazdani, Mohsen, 2022. "Thermo-economic analysis of syngas production from wet digested sewage sludge by gasification process," Renewable Energy, Elsevier, vol. 190(C), pages 524-539.
    7. Yao, Xiwen & Zhao, Zhicheng & Li, Jishuo & Zhang, Bohan & Zhou, Haodong & Xu, Kaili, 2020. "Experimental investigation of physicochemical and slagging characteristics of inorganic constituents in ash residues from gasification of different herbaceous biomass," Energy, Elsevier, vol. 198(C).
    8. Tang, Genyang & Gu, Jing & Huang, Zhen & Yuan, Haoran & Chen, Yong, 2022. "Cellulose gasification with Ca–Fe oxygen carrier in chemical-looping process," Energy, Elsevier, vol. 239(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarafraz, M.M. & Jafarian, M. & Arjomandi, M. & Nathan, G.J., 2017. "Potential use of liquid metal oxides for chemical looping gasification: A thermodynamic assessment," Applied Energy, Elsevier, vol. 195(C), pages 702-712.
    2. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2017. "Thermodynamic potential of molten copper oxide for high temperature solar energy storage and oxygen production," Applied Energy, Elsevier, vol. 201(C), pages 69-83.
    3. Su, Hongcai & Yan, Mi & Wang, Shurong, 2022. "Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Liu, Yinan & Deng, Shuai & Zhao, Ruikai & He, Junnan & Zhao, Li, 2017. "Energy-saving pathway exploration of CCS integrated with solar energy: A review of innovative concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 652-669.
    5. Janajreh, Isam & Adeyemi, Idowu & Raza, Syed Shabbar & Ghenai, Chaouki, 2021. "A review of recent developments and future prospects in gasification systems and their modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Silakhori, Mahyar & Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2019. "The energetic performance of a liquid chemical looping cycle with solar thermal energy storage," Energy, Elsevier, vol. 170(C), pages 93-101.
    7. Ogidiama, Oghare Victor & Abu-Zahra, Mohammad R.M. & Shamim, Tariq, 2018. "Techno-economic analysis of a poly-generation solar-assisted chemical looping combustion power plant," Applied Energy, Elsevier, vol. 228(C), pages 724-735.
    8. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    9. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2014. "The energetic performance of a novel hybrid solar thermal & chemical looping combustion plant," Applied Energy, Elsevier, vol. 132(C), pages 74-85.
    10. Jiang, Qiongqiong & Zhang, Hao & Deng, Ya'nan & Kang, Qilan & Hong, Hui & Jin, Hongguang, 2018. "Properties and reactivity of LaCuxNi1−xO3 perovskites in chemical-looping combustion for mid-temperature solar-thermal energy storage," Applied Energy, Elsevier, vol. 228(C), pages 1506-1514.
    11. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2014. "A hybrid solar chemical looping combustion system with a high solar share," Applied Energy, Elsevier, vol. 126(C), pages 69-77.
    12. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability, Springer, vol. 2(4), pages 1345-1367, December.
    13. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    14. Kalogirou, Soteris A. & Karellas, Sotirios & Badescu, Viorel & Braimakis, Konstantinos, 2016. "Exergy analysis on solar thermal systems: A better understanding of their sustainability," Renewable Energy, Elsevier, vol. 85(C), pages 1328-1333.
    15. Yao, Xiwen & Zhao, Zhicheng & Li, Jishuo & Zhang, Bohan & Zhou, Haodong & Xu, Kaili, 2020. "Experimental investigation of physicochemical and slagging characteristics of inorganic constituents in ash residues from gasification of different herbaceous biomass," Energy, Elsevier, vol. 198(C).
    16. Pasquale Iannotta & Giuseppe Caputo & Francesca Scargiali & Sonia Longo & Maurizio Cellura & Alberto Brucato, 2020. "Combined Gasification-Oxidation System for Waste Treatment with Supercritical Water: LCA and Performance Analysis," Sustainability, MDPI, vol. 13(1), pages 1-14, December.
    17. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Monteiro, Eliseu & Ismail, Tamer M. & Ramos, Ana & Abd El-Salam, M. & Brito, Paulo & Rouboa, Abel, 2018. "Experimental and modeling studies of Portuguese peach stone gasification on an autothermal bubbling fluidized bed pilot plant," Energy, Elsevier, vol. 142(C), pages 862-877.
    19. Samiee-Zafarghandi, Roudabeh & Karimi-Sabet, Javad & Abdoli, Mohammad Ali & Karbassi, Abdolreza, 2018. "Supercritical water gasification of microalga Chlorella PTCC 6010 for hydrogen production: Box-Behnken optimization and evaluating catalytic effect of MnO2/SiO2 and NiO/SiO2," Renewable Energy, Elsevier, vol. 126(C), pages 189-201.
    20. Dhananjay Bhatt & Ankita Shrestha & Raj Kumar Dahal & Bishnu Acharya & Prabir Basu & Richard MacEwen, 2018. "Hydrothermal Carbonization of Biosolids from Waste Water Treatment Plant," Energies, MDPI, vol. 11(9), pages 1-10, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2591-:d:245854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.