IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v247y2022ics0360544222001451.html
   My bibliography  Save this article

Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production

Author

Listed:
  • Yadav, Deepak
  • Banerjee, Rangan

Abstract

This paper assesses the viability of the solar carbothermal reduction process for zinc production by comparing the thermodynamic efficiencies and levelized cost of zinc (LCOZ) with the solar hydrometallurgy routes. Four configurations of the hydrometallurgy route - concentrated solar power (CSP), photovoltaics (PV), solar-tariff, and grid-tariff based processes have been considered. The analysis is reported for the pilot (300 kWth), demonstration (5 MWth) and commercial (30 MWth) size systems. It is seen that the solar carbothermal process is thermodynamically more efficient than the hydrometallurgy route. The technology, however, is not viable at the pilot and demonstration scales and is likely to become cost-effective only at the commercial scale. For the commercial-scale plant, the LCOZ from the solar carbothermal process (172–204 $/ton) is lower than the solar (403 $/ton) and grid (281 $/ton) based hydrometallurgy processes. The cost of zinc obtained from solar thermochemical process is expected to further reduce by 7% in 2030. The bottom-up assessment shows the possibility of an 8–10% reduction. The solar carbothermal process appears to be promising at a commercial (30 MWth) scale. Therefore, the concept should now be demonstrated on a pilot scale for all sunshine hours in a year to boost confidence in the technology.

Suggested Citation

  • Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222001451
    DOI: 10.1016/j.energy.2022.123242
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222001451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123242?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yilmaz, Fatih & Selbaş, Reşat, 2017. "Thermodynamic performance assessment of solar based Sulfur-Iodine thermochemical cycle for hydrogen generation," Energy, Elsevier, vol. 140(P1), pages 520-529.
    2. Schröders, Sarah & Allelein, Hans-Josef, 2018. "Energy economic evaluation of process heat supply by solar tower and high temperature reactor based on the ammonia production process," Applied Energy, Elsevier, vol. 212(C), pages 622-639.
    3. Kong, Hui & Kong, Xianghui & Wang, Jian & Zhang, Jun, 2019. "Thermodynamic analysis of a solar thermochemical cycle-based direct coal liquefaction system for oil production," Energy, Elsevier, vol. 179(C), pages 1279-1287.
    4. Nzihou, Ange & Flamant, Gilles & Stanmore, Brian, 2012. "Synthetic fuels from biomass using concentrated solar energy – A review," Energy, Elsevier, vol. 42(1), pages 121-131.
    5. Temiz, Mert & Dincer, Ibrahim, 2021. "Concentrated solar driven thermochemical hydrogen production plant with thermal energy storage and geothermal systems," Energy, Elsevier, vol. 219(C).
    6. Steinfeld, A. & Larson, C. & Palumbo, R. & Foley, M., 1996. "Thermodynamic analysis of the co-production of zinc and synthesis gas using solar process heat," Energy, Elsevier, vol. 21(3), pages 205-222.
    7. Lange, M. & Roeb, M. & Sattler, C. & Pitz-Paal, R., 2014. "T–S diagram efficiency analysis of two-step thermochemical cycles for solar water splitting under various process conditions," Energy, Elsevier, vol. 67(C), pages 298-308.
    8. Razi, Faran & Dincer, Ibrahim & Gabriel, Kamiel, 2020. "Energy and exergy analyses of a new integrated thermochemical copper-chlorine cycle for hydrogen production," Energy, Elsevier, vol. 205(C).
    9. Werder, Miriam & Steinfeld, Aldo, 2000. "Life cycle assessment of the conventional and solar thermal production of zinc and synthesis gas," Energy, Elsevier, vol. 25(5), pages 395-409.
    10. Kong, Hui & Hao, Yong & Jin, Hongguang, 2018. "Isothermal versus two-temperature solar thermochemical fuel synthesis: A comparative study," Applied Energy, Elsevier, vol. 228(C), pages 301-308.
    11. Davenport, Timothy C. & Yang, Chih-Kai & Kucharczyk, Christopher J. & Ignatowich, Michael J. & Haile, Sossina M., 2016. "Maximizing fuel production rates in isothermal solar thermochemical fuel production," Applied Energy, Elsevier, vol. 183(C), pages 1098-1111.
    12. Krishnamurthy, Pranesh & Mishra, Shreya & Banerjee, Rangan, 2012. "An analysis of costs of parabolic trough technology in India," Energy Policy, Elsevier, vol. 48(C), pages 407-419.
    13. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    14. Koepf, E. & Alxneit, I. & Wieckert, C. & Meier, A., 2017. "A review of high temperature solar driven reactor technology: 25years of experience in research and development at the Paul Scherrer Institute," Applied Energy, Elsevier, vol. 188(C), pages 620-651.
    15. Kräupl, Stefan & Wieckert, Christian, 2007. "Economic evaluation of the solar carbothermic reduction of ZnO by using a single sensitivity analysis and a Monte-Carlo risk analysis," Energy, Elsevier, vol. 32(7), pages 1134-1147.
    16. Rea, Jonathan E. & Oshman, Christopher J. & Olsen, Michele L. & Hardin, Corey L. & Glatzmaier, Greg C. & Siegel, Nathan P. & Parilla, Philip A. & Ginley, David S. & Toberer, Eric S., 2018. "Performance modeling and techno-economic analysis of a modular concentrated solar power tower with latent heat storage," Applied Energy, Elsevier, vol. 217(C), pages 143-152.
    17. Yadav, Deepak & Banerjee, Rangan, 2018. "A comparative life cycle energy and carbon emission analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Applied Energy, Elsevier, vol. 229(C), pages 577-602.
    18. Zedtwitz, P.v. & Steinfeld, A., 2003. "The solar thermal gasification of coal — energy conversion efficiency and CO2 mitigation potential," Energy, Elsevier, vol. 28(5), pages 441-456.
    19. Xie, Tao & Xu, Kai-Di & He, Ya-Ling & Wang, Kun & Yang, Bo-Lun, 2018. "Thermodynamic and kinetic analysis of an integrated solar thermochemical energy storage system for dry-reforming of methane," Energy, Elsevier, vol. 164(C), pages 937-950.
    20. Zhang, Meimei & Wang, Zhifeng & Xu, Chao & Jiang, Hui, 2012. "Embodied energy and emergy analyses of a concentrating solar power (CSP) system," Energy Policy, Elsevier, vol. 42(C), pages 232-238.
    21. Haeussler, Anita & Abanades, Stéphane & Julbe, Anne & Jouannaux, Julien & Cartoixa, Bruno, 2020. "Solar thermochemical fuel production from H2O and CO2 splitting via two-step redox cycling of reticulated porous ceria structures integrated in a monolithic cavity-type reactor," Energy, Elsevier, vol. 201(C).
    22. Bozoglan, Elif & Midilli, Adnan & Hepbasli, Arif, 2012. "Sustainable assessment of solar hydrogen production techniques," Energy, Elsevier, vol. 46(1), pages 85-93.
    23. Meier, Anton & Bonaldi, Enrico & Cella, Gian Mario & Lipinski, Wojciech & Wuillemin, Daniel & Palumbo, Robert, 2004. "Design and experimental investigation of a horizontal rotary reactor for the solar thermal production of lime," Energy, Elsevier, vol. 29(5), pages 811-821.
    24. Farsi, Aida & Dincer, Ibrahim & Naterer, Greg F., 2020. "Second law analysis of CuCl2 hydrolysis reaction in the Cu–Cl thermochemical cycle of hydrogen production," Energy, Elsevier, vol. 202(C).
    25. Halmann, M. & Frei, A. & Steinfeld, A., 2007. "Carbothermal reduction of alumina: Thermochemical equilibrium calculations and experimental investigation," Energy, Elsevier, vol. 32(12), pages 2420-2427.
    26. Johan Lilliestam & Mercè Labordena & Anthony Patt & Stefan Pfenninger, 2017. "Empirically observed learning rates for concentrating solar power and their responses to regime change," Nature Energy, Nature, vol. 2(7), pages 1-6, July.
    27. Michalsky, Ronald & Parman, Bryon J. & Amanor-Boadu, Vincent & Pfromm, Peter H., 2012. "Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses," Energy, Elsevier, vol. 42(1), pages 251-260.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yadav, Deepak & Banerjee, Rangan, 2016. "A review of solar thermochemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 497-532.
    2. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    3. Yadav, Deepak & Banerjee, Rangan, 2018. "A comparative life cycle energy and carbon emission analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Applied Energy, Elsevier, vol. 229(C), pages 577-602.
    4. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    5. Alvarez Rivero, M. & Rodrigues, D. & Pinheiro, C.I.C. & Cardoso, J.P. & Mendes, L.F., 2022. "Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Chen, Jing & Kong, Hui & Wang, Hongsheng, 2023. "A novel high-efficiency solar thermochemical cycle for fuel production based on chemical-looping cycle oxygen removal," Applied Energy, Elsevier, vol. 343(C).
    7. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
    8. Stéphane Abanades, 2022. "Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review," Energies, MDPI, vol. 15(19), pages 1-28, September.
    9. Sun, Xue & Li, Xiaofei & Zeng, Jingxin & Song, Qiang & Yang, Zhen & Duan, Yuanyuan, 2023. "Energy and exergy analysis of a novel solar-hydrogen production system with S–I thermochemical cycle," Energy, Elsevier, vol. 283(C).
    10. Rahul R. Bhosale, 2023. "Recent Developments in Ceria-Driven Solar Thermochemical Water and Carbon Dioxide Splitting Redox Cycle," Energies, MDPI, vol. 16(16), pages 1-30, August.
    11. Wang, Bo & Li, Xian & Zhu, Xuancan & Wang, Yuesen & Tian, Tian & Dai, Yanjun & Wang, Chi-Hwa, 2023. "An epitrochoidal rotary reactor for solar-driven hydrogen production based on the redox cycling of ceria: Thermodynamic analysis and geometry optimization," Energy, Elsevier, vol. 270(C).
    12. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    13. Voicu-Teodor Muica & Alexandru Ozunu & Zoltàn Török, 2021. "Comparative Life Cycle Impact Assessment between the Productions of Zinc from Conventional Concentrates versus Waelz Oxides Obtained from Slags," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    14. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2017. "Thermodynamic potential of molten copper oxide for high temperature solar energy storage and oxygen production," Applied Energy, Elsevier, vol. 201(C), pages 69-83.
    15. Jiao, Fan & Lu, Buchu & Chen, Chen & Liu, Qibin, 2021. "Exergy transfer and degeneration in thermochemical cycle reactions for hydrogen production: Novel exergy- and energy level-based methods," Energy, Elsevier, vol. 219(C).
    16. Sheline, W. & Matthews, L. & Lindeke, N. & Duncan, S. & Palumbo, R., 2013. "An exploratory study of the solar thermal electrolytic production of Mg from MgO," Energy, Elsevier, vol. 51(C), pages 163-170.
    17. Adinberg, Roman & Epstein, Michael, 2004. "Experimental study of solar reactors for carboreduction of zinc oxide," Energy, Elsevier, vol. 29(5), pages 757-769.
    18. Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
    19. Kong, Hui & Wang, Jian & Zheng, Hongfei & Wang, Hongsheng & Zhang, Jun & Yu, Zhufeng & Bo, Zheng, 2022. "Techno-economic analysis of a solar thermochemical cycle-based direct coal liquefaction system for low-carbon oil production," Energy, Elsevier, vol. 239(PC).
    20. Kong, Hui & Li, Zheng & Yu, Zhufeng & Zhang, Jun & Wang, Hongsheng & Wang, Jian & Gao, Dan, 2021. "Environmental and economic multi-objective optimization of comprehensive energy industry: A case study," Energy, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222001451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.