IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v109y2013icp523-529.html
   My bibliography  Save this article

Active free cooling optimization with thermal energy storage in Stockholm

Author

Listed:
  • Chiu, Justin N.W.
  • Gravoille, Pauline
  • Martin, Viktoria

Abstract

Latent heat thermal energy storage (LHTES) integrated active free cooling stores night time cold and serves as heat sink for cooling when demand rises. Passive buildings, albeit their advantages in limiting heat loss during winter time, are often paired with excessive internal overheating in summer, as shown in the first part of this study. Under the climate condition in Stockholm, LHTES systems may provide solutions for sustainable cooling with use of renewable cooling sources. This study presents a multi-objective optimization on system cost and cooling supply for various LHTES configurations followed with a sensitivity analysis on phase change material cost and energy price. Results indicate that optimized LHTES may meet cooling needs while retaining economic viability. However, LHTES based cooling systems may require substantially higher electricity demand than conventional air conditioning unit for applications where high cooling thermal power rate is to be met, a tradeoff to indoor comfort level needs to be considered to reach the concept of sustainable free cooling. We here provide a novel techno-economic feasibility study of active free cooling LHTES in Stockholm as well as new insights to cost, comfort level and energy requirement with use of multi-objective optimization algorithm.

Suggested Citation

  • Chiu, Justin N.W. & Gravoille, Pauline & Martin, Viktoria, 2013. "Active free cooling optimization with thermal energy storage in Stockholm," Applied Energy, Elsevier, vol. 109(C), pages 523-529.
  • Handle: RePEc:eee:appene:v:109:y:2013:i:c:p:523-529
    DOI: 10.1016/j.apenergy.2013.01.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913000950
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.01.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kranz, Stefan & Frick, Stephanie, 2013. "Efficient cooling energy supply with aquifer thermal energy storages," Applied Energy, Elsevier, vol. 109(C), pages 321-327.
    2. Li, Danny H.W. & Cheung, K.L. & Wong, S.L. & Lam, Tony N.T., 2010. "An analysis of energy-efficient light fittings and lighting controls," Applied Energy, Elsevier, vol. 87(2), pages 558-567, February.
    3. Muñoz, J. & Martínez-Val, J.M. & Abbas, R. & Abánades, A., 2012. "Dry cooling with night cool storage to enhance solar power plants performance in extreme conditions areas," Applied Energy, Elsevier, vol. 92(C), pages 429-436.
    4. Badescu, Viorel & Laaser, Nadine & Crutescu, Ruxandra, 2010. "Warm season cooling requirements for passive buildings in Southeastern Europe (Romania)," Energy, Elsevier, vol. 35(8), pages 3284-3300.
    5. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Xinhua & Yu, Jinghua & Wang, Shengwei & Wang, Jinbo, 2014. "Research and application of active hollow core slabs in building systems for utilizing low energy sources," Applied Energy, Elsevier, vol. 116(C), pages 424-435.
    2. Ganjehkaviri, A. & Mohd Jaafar, M.N. & Hosseini, S.E. & Barzegaravval, H., 2016. "On the optimization of energy systems: Results utilization in the design process," Applied Energy, Elsevier, vol. 178(C), pages 587-599.
    3. Allouche, Yosr & Varga, Szabolcs & Bouden, Chiheb & Oliveira, Armando C., 2017. "Dynamic simulation of an integrated solar-driven ejector based air conditioning system with PCM cold storage," Applied Energy, Elsevier, vol. 190(C), pages 600-611.
    4. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "Application of an active PCM storage system into a building for heating/cooling load reduction," Energy, Elsevier, vol. 210(C).
    5. Pop, Octavian G. & Fechete Tutunaru, Lucian & Bode, Florin & Abrudan, Ancuţa C. & Balan, Mugur C., 2018. "Energy efficiency of PCM integrated in fresh air cooling systems in different climatic conditions," Applied Energy, Elsevier, vol. 212(C), pages 976-996.
    6. Rezaie, Behnaz & Reddy, Bale V. & Rosen, Marc A., 2014. "Energy analysis of thermal energy storages with grid configurations," Applied Energy, Elsevier, vol. 117(C), pages 54-61.
    7. Alizadeh, M. & Sadrameli, S.M., 2016. "Development of free cooling based ventilation technology for buildings: Thermal energy storage (TES) unit, performance enhancement techniques and design considerations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 619-645.
    8. Long, Linshuang & Ye, Hong & Gao, Yanfeng & Zou, Ruqiang, 2014. "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, Elsevier, vol. 136(C), pages 89-97.
    9. Auza, Anna & Asadi, Ehsan & Chenari, Behrang & Gameiro da Silva, Manuel, 2024. "Review of cost objective functions in multi-objective optimisation analysis of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    10. Jannesari, Hamid & Abdollahi, Naeim, 2017. "Experimental and numerical study of thin ring and annular fin effects on improving the ice formation in ice-on-coil thermal storage systems," Applied Energy, Elsevier, vol. 189(C), pages 369-384.
    11. Zeljković, Čedomir & Mršić, Predrag & Erceg, Bojan & Lekić, Đorđe & Kitić, Nemanja & Matić, Petar, 2022. "Optimal sizing of photovoltaic-wind-diesel-battery power supply for mobile telephony base stations," Energy, Elsevier, vol. 242(C).
    12. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM underfloor heating in combination with PCM wallboards for space heating using price based control system," Applied Energy, Elsevier, vol. 148(C), pages 39-48.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    2. Tettey, Uniben Yao Ayikoe & Dodoo, Ambrose & Gustavsson, Leif, 2016. "Primary energy implications of different design strategies for an apartment building," Energy, Elsevier, vol. 104(C), pages 132-148.
    3. Muresan, Adina Ana & Attia, Shady, 2017. "Energy efficiency in the Romanian residential building stock: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 349-363.
    4. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    5. Chitnis, Dipti & Thejo kalyani, N. & Swart, H.C. & Dhoble, S.J., 2016. "Escalating opportunities in the field of lighting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 727-748.
    6. Chau, C.K. & Xu, J.M. & Leung, T.M. & Ng, W.Y., 2017. "Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building," Applied Energy, Elsevier, vol. 185(P2), pages 1595-1603.
    7. Lei, Jiawei & Yang, Jinglei & Yang, En-Hua, 2016. "Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore," Applied Energy, Elsevier, vol. 162(C), pages 207-217.
    8. Andrea Pianella & Lu Aye & Zhengdong Chen & Nicholas S. G. Williams, 2017. "Substrate Depth, Vegetation and Irrigation Affect Green Roof Thermal Performance in a Mediterranean Type Climate," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
    9. Zhang, Lili & Hou, Yuyao & Liu, Zu’an & Du, Junfei & Xu, Long & Zhang, Guomin & Shi, Long, 2020. "Trombe wall for a residential building in Sichuan-Tibet alpine valley – A case study," Renewable Energy, Elsevier, vol. 156(C), pages 31-46.
    10. Mao, Ning & Hao, Jingyu & He, Tianbiao & Song, Mengjie & Xu, Yingjie & Deng, Shiming, 2019. "PMV-based dynamic optimization of energy consumption for a residential task/ambient air conditioning system in different climate zones," Renewable Energy, Elsevier, vol. 142(C), pages 41-54.
    11. Jianhua Ding & Xinyi Zou & Murong Lv, 2023. "Influence of Opposing Exterior Window Geometry on the Carbon Emissions of Indoor Lighting under the Combined Effect of Natural Lighting and Artificial Lighting in the City of Shenyang, China," Sustainability, MDPI, vol. 15(17), pages 1-20, August.
    12. Angelo Monteleone & Gianluca Rodonò & Antonio Gagliano & Vincenzo Sapienza, 2021. "SLICE: An Innovative Photovoltaic Solution for Adaptive Envelope Prototyping and Testing in a Relevant Environment," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    13. Roberta Moschetti & Shabnam Homaei & Ellika Taveres-Cachat & Steinar Grynning, 2022. "Assessing Responsive Building Envelope Designs through Robustness-Based Multi-Criteria Decision Making in Zero-Emission Buildings," Energies, MDPI, vol. 15(4), pages 1-27, February.
    14. Zhang, Tiantian & Yang, Hongxing, 2019. "Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar façades," Applied Energy, Elsevier, vol. 242(C), pages 107-120.
    15. Ayikoe Tettey, Uniben Yao & Gustavsson, Leif, 2020. "Energy savings and overheating risk of deep energy renovation of a multi-storey residential building in a cold climate under climate change," Energy, Elsevier, vol. 202(C).
    16. Boukelia, T.E. & Bouraoui, A. & Laouafi, A. & Djimli, S. & Kabar, Y., 2020. "3E (Energy-Exergy-Economic) comparative study of integrating wet and dry cooling systems in solar tower power plants," Energy, Elsevier, vol. 200(C).
    17. Chen, Xi & Yang, Hongxing & Wang, Yuanhao, 2017. "Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 442-460.
    18. Sommese, Francesco & Badarnah, Lidia & Ausiello, Gigliola, 2022. "A critical review of biomimetic building envelopes: towards a bio-adaptive model from nature to architecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    19. Dietz, Annelore & Vera, Sergio & Bustamante, Waldo & Flamant, Gilles, 2020. "Multi-objective optimization to balance thermal comfort and energy use in a mining camp located in the Andes Mountains at high altitude," Energy, Elsevier, vol. 199(C).
    20. Cuce, Pinar Mert & Riffat, Saffa, 2016. "A state of the art review of evaporative cooling systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1240-1249.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:109:y:2013:i:c:p:523-529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.