IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v169y2022ics1364032122007328.html
   My bibliography  Save this article

A critical review of biomimetic building envelopes: towards a bio-adaptive model from nature to architecture

Author

Listed:
  • Sommese, Francesco
  • Badarnah, Lidia
  • Ausiello, Gigliola

Abstract

The building envelope has an important role in regulating the energy exchanges between the internal and external environment. In recent years, various studies on technological solutions for responsive and intelligent envelopes have been carried out. The purpose of this paper is to investigate climate-adaptive building envelopes and related biomimetic solutions, providing a critical review of the state of the art. Various examples of the adaptive envelopes are analysed and compared with examples of biomimetic envelopes. This paper demonstrates the potential of the broad database of nature to provide solutions that can be implemented in architecture to achieve design solutions that are sustainable, energy efficient, and able to adapt to environmental changes. After an initial critical review of nature's adaptation strategies, a methodological approach has been proposed: the bio-adaptive model (bio-AM). Starting from the definition of the context and the relative abiotic factors, the bio-AM identifies the essential phases to transfer the functions of plants to building technologies, using adaptive materials capable of self-activation in response to environmental factors, thus potentially emulating the adaptation of plants in technological solutions for the future of sustainable buildings.

Suggested Citation

  • Sommese, Francesco & Badarnah, Lidia & Ausiello, Gigliola, 2022. "A critical review of biomimetic building envelopes: towards a bio-adaptive model from nature to architecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:rensus:v:169:y:2022:i:c:s1364032122007328
    DOI: 10.1016/j.rser.2022.112850
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122007328
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112850?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mirrahimi, Seyedehzahra & Mohamed, Mohd Farid & Haw, Lim Chin & Ibrahim, Nik Lukman Nik & Yusoff, Wardah Fatimah Mohammad & Aflaki, Ardalan, 2016. "The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1508-1519.
    2. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    3. López, Marlén & Rubio, Ramón & Martín, Santiago & Ben Croxford,, 2017. "How plants inspire façades. From plants to architecture: Biomimetic principles for the development of adaptive architectural envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 692-703.
    4. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    5. Mauree, Dasaraden & Naboni, Emanuele & Coccolo, Silvia & Perera, A.T.D. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 733-746.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sommese, Francesco & Badarnah, Lidia & Ausiello, Gigliola, 2023. "Smart materials for biomimetic building envelopes: current trends and potential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Gonçalves, M. & Figueiredo, A. & Almeida, R.M.S.F. & Vicente, R., 2024. "Dynamic façades in buildings: A systematic review across thermal comfort, energy efficiency and daylight performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberta Moschetti & Shabnam Homaei & Ellika Taveres-Cachat & Steinar Grynning, 2022. "Assessing Responsive Building Envelope Designs through Robustness-Based Multi-Criteria Decision Making in Zero-Emission Buildings," Energies, MDPI, vol. 15(4), pages 1-27, February.
    2. Shiva Amirkhani & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2019. "Impact of Low-E Window Films on Energy Consumption and CO 2 Emissions of an Existing UK Hotel Building," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    3. Marchini, F. & Chiatti, C. & Fabiani, C. & Pisello, A.L., 2023. "Development of an innovative translucent–photoluminescent coating for smart windows applications: An experimental and numerical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Abraham Nathan Zoure & Paolo Vincenzo Genovese, 2022. "Development of Bioclimatic Passive Designs for Office Building in Burkina Faso," Sustainability, MDPI, vol. 14(7), pages 1-23, April.
    5. Buchmayr, A. & Verhofstadt, E. & Van Ootegem, L. & Sanjuan Delmás, D. & Thomassen, G. & Dewulf, J., 2021. "The path to sustainable energy supply systems: Proposal of an integrative sustainability assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Punita Sangwan & Hooman Mehdizadeh-Rad & Anne Wai Man Ng & Muhammad Atiq Ur Rehman Tariq & Raphael Chukwuka Nnachi, 2022. "Performance Evaluation of Phase Change Materials to Reduce the Cooling Load of Buildings in a Tropical Climate," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    7. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
    8. Artem Holstov & Graham Farmer & Ben Bridgens, 2017. "Sustainable Materialisation of Responsive Architecture," Sustainability, MDPI, vol. 9(3), pages 1-20, March.
    9. Abdul Mujeebu, Muhammad & Bano, Farheen, 2022. "Integration of passive energy conservation measures in a detached residential building design in warm humid climate," Energy, Elsevier, vol. 255(C).
    10. Paulina Schiappacasse & Bernhard Müller & Le Thuy Linh, 2019. "Towards Responsible Aggregate Mining in Vietnam," Resources, MDPI, vol. 8(3), pages 1-15, August.
    11. Pina Puntillo, 2023. "Circular economy business models: Towards achieving sustainable development goals in the waste management sector—Empirical evidence and theoretical implications," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(2), pages 941-954, March.
    12. R. Ebrahimi & S. Choobchian & H. Farhadian & I. Goli & E. Farmandeh & H. Azadi, 2022. "Investigating the effect of vocational education and training on rural women’s empowerment," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    13. Bárbara Galleli & Elder Semprebon & Joyce Aparecida Ramos dos Santos & Noah Emanuel Brito Teles & Mateus Santos de Freitas-Martins & Raquel Teodoro da Silva Onevetch, 2021. "Institutional Pressures, Sustainable Development Goals and COVID-19: How Are Organisations Engaging?," Sustainability, MDPI, vol. 13(21), pages 1-21, November.
    14. Sagarika Dey & Priyanka Devi, 2019. "Impact of TVET on Labour Market Outcomes and Women’s Empowerment in Rural Areas: A Case Study from Cachar District, Assam," Indian Journal of Human Development, , vol. 13(3), pages 357-371, December.
    15. Maria Sassi, 2020. "A SEM Approach to the Direct and Indirect Links between WaSH Services and Access to Food in Countries in Protracted Crises: The Case of Western Bahr-el-Ghazal State, South Sudan," Sustainability, MDPI, vol. 12(22), pages 1-13, November.
    16. Olga Stepanova & Magdalena Romanov, 2021. "Urban Planning as a Strategy to Implement Social Sustainability Policy Goals? The Case of Temporary Housing for Immigrants in Gothenburg, Sweden," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    17. Michel, Hanno, 2020. "From local to global: The role of knowledge, transfer, and capacity building for successful energy transitions," Discussion Papers, Research Group Digital Mobility and Social Differentiation SP III 2020-603, WZB Berlin Social Science Center.
    18. Hervé Corvellec & Johan Hultman & Anne Jerneck & Susanne Arvidsson & Johan Ekroos & Niklas Wahlberg & Timothy W. Luke, 2021. "Resourcification: A non‐essentialist theory of resources for sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1249-1256, November.
    19. Wilson Charles Wilson & Maja Slingerland & Frederick P. Baijukya & Hannah Zanten & Simon Oosting & Ken E. Giller, 2021. "Integrating the soybean-maize-chicken value chains to attain nutritious diets in Tanzania," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(6), pages 1595-1612, December.
    20. Jones, Lindsey & d'Errico, Marco, 2019. "Whose resilience matters? Like-for-like comparison of objective and subjective evaluations of resilience," World Development, Elsevier, vol. 124(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:169:y:2022:i:c:s1364032122007328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.