IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v414y2022ics0096300321007475.html
   My bibliography  Save this article

Partially-coupled nonlinear parameter optimization algorithm for a class of multivariate hybrid models

Author

Listed:
  • Zhou, Yihong
  • Zhang, Xiao
  • Ding, Feng

Abstract

A key to the analysis and design of a dynamic system is to establish a suitable mathematical model of the system. This paper investigates the parameter optimization problem of a class of radial basis function-based multivariate hybrid models. Taking into account the high dimensions of the models and different forms of the parameters, the original identification model is separated into several regressive sub-identification models according to the characteristics of model outputs. Some auxiliary models are constructed to solve the unmeasurable noise terms in the information matrices. For the purpose of eliminating the redundant computation and to deal with the associate terms caused by the model decomposition, inspired by the coupling concept, a partially-coupled nonlinear parameter optimization algorithm is proposed for the multivariate hybrid models. Through the computational efficiency analysis and numerical simulation verification, it is shown that the proposed algorithm has low computational complexity and high parameter estimation accuracy.

Suggested Citation

  • Zhou, Yihong & Zhang, Xiao & Ding, Feng, 2022. "Partially-coupled nonlinear parameter optimization algorithm for a class of multivariate hybrid models," Applied Mathematics and Computation, Elsevier, vol. 414(C).
  • Handle: RePEc:eee:apmaco:v:414:y:2022:i:c:s0096300321007475
    DOI: 10.1016/j.amc.2021.126663
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321007475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126663?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. B. Priestley, 1980. "State‐Dependent Models: A General Approach To Non‐Linear Time Series Analysis," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 47-71, January.
    2. Volna, Eva & Jarusek, Robert & Kotyrba, Martin & Zacek, Jaroslav, 2021. "Training set fuzzification based on histogram to increase the performance of a neural network," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    3. Ling Xu & Feng Ding & Quanmin Zhu, 2019. "Hierarchical Newton and least squares iterative estimation algorithm for dynamic systems by transfer functions based on the impulse responses," International Journal of Systems Science, Taylor & Francis Journals, vol. 50(1), pages 141-151, January.
    4. Xue-Bo Jin & Wei-Zhen Zheng & Jian-Lei Kong & Xiao-Yi Wang & Yu-Ting Bai & Ting-Li Su & Seng Lin, 2021. "Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization," Energies, MDPI, vol. 14(6), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing, Shaoxue, 2023. "Time-delay Hammerstein system identification using modified cross-correlation method and variable stacking length multi-error algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 288-300.
    2. Chaudhary, Naveed Ishtiaq & Khan, Zeshan Aslam & Kiani, Adiqa Kausar & Raja, Muhammad Asif Zahoor & Chaudhary, Iqra Ishtiaq & Pinto, Carla M.A., 2022. "Design of auxiliary model based normalized fractional gradient algorithm for nonlinear output-error systems," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    3. Jianlei Kong & Hongxing Wang & Chengcai Yang & Xuebo Jin & Min Zuo & Xin Zhang, 2022. "A Spatial Feature-Enhanced Attention Neural Network with High-Order Pooling Representation for Application in Pest and Disease Recognition," Agriculture, MDPI, vol. 12(4), pages 1-30, March.
    4. Tang, Jia, 2023. "Fractional gradient descent algorithm for switching models using self-organizing maps: One set data or all the collected data," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donya Rahmani & Saeed Heravi & Hossein Hassani & Mansi Ghodsi, 2016. "Forecasting time series with structural breaks with Singular Spectrum Analysis, using a general form of recurrent formula," Papers 1605.02188, arXiv.org.
    2. Venkataramana Veeramsetty & Arjun Mohnot & Gaurav Singal & Surender Reddy Salkuti, 2021. "Short Term Active Power Load Prediction on A 33/11 kV Substation Using Regression Models," Energies, MDPI, vol. 14(11), pages 1-21, May.
    3. Huafeng Xia & Feiyan Chen, 2020. "Filtering-Based Parameter Identification Methods for Multivariable Stochastic Systems," Mathematics, MDPI, vol. 8(12), pages 1-19, December.
    4. Chung-Shu Wu & Ruey S. Tsay, 2003. "Forecasting with leading indicators revisited," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(8), pages 603-617.
    5. Xue-Bo Jin & Wen-Tao Gong & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su, 2022. "PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
    6. Wang, Xinlin & Yao, Zhihao & Papaefthymiou, Marios, 2023. "A real-time electrical load forecasting and unsupervised anomaly detection framework," Applied Energy, Elsevier, vol. 330(PA).
    7. Bai, Zhidong & Hui, Yongchang & Wong, Wing-Keung, 2012. "New Non-Linearity Test to Circumvent the Limitation of Volterra Expansion," MPRA Paper 41872, University Library of Munich, Germany.
    8. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    9. Giampiero M. Gallo & Yongmiao Hong & Tae-Why Lee, 2001. "Modelling the Impact of Overnight Surprises on Intra-daily Stock Returns," Econometrics Working Papers Archive wp2001_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    10. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2021. "A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality," Energies, MDPI, vol. 14(19), pages 1-19, September.
    11. Jeff B. Cromwell & Michael J. Hannan, 1993. "The Utility of Impulse Response Functions in Regional Analysis: Some Critical Issues," International Regional Science Review, , vol. 15(2), pages 199-222, August.
    12. T.P. Koirala Ph.D., 2012. "Inflation Persistence in Nepal: A TAR Representation," NRB Working Paper 11/2012, Nepal Rastra Bank, Research Department.
    13. Bovas Abraham & A. Thavaneswaran, 1991. "A nonlinear time series model and estimation of missing observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(3), pages 493-504, September.
    14. Donya Rahmani & Damien Fay, 2022. "A state‐dependent linear recurrent formula with application to time series with structural breaks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 43-63, January.
    15. David E. Runkle & Peter C. Young, 1989. "Recursive estimation and modelling of nonstationary and nonlinear time series," Discussion Paper / Institute for Empirical Macroeconomics 7, Federal Reserve Bank of Minneapolis.
    16. Alexandros Agapitos & Anthony Brabazon & Michael O’Neill, 2017. "Regularised gradient boosting for financial time-series modelling," Computational Management Science, Springer, vol. 14(3), pages 367-391, July.
    17. Andi A. H. Lateko & Hong-Tzer Yang & Chao-Ming Huang, 2022. "Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method," Energies, MDPI, vol. 15(11), pages 1-21, June.
    18. Cross, Philip & Ma, Xiandong, 2014. "Nonlinear system identification for model-based condition monitoring of wind turbines," Renewable Energy, Elsevier, vol. 71(C), pages 166-175.
    19. Krishna Prakash N. & Jai Govind Singh, 2023. "Electricity price forecasting using hybrid deep learned networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1750-1771, November.
    20. Hai‐Bin Wang, 2008. "Nonlinear ARMA models with functional MA coefficients," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 1032-1056, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:414:y:2022:i:c:s0096300321007475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.