IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v50y2019i1p141-151.html
   My bibliography  Save this article

Hierarchical Newton and least squares iterative estimation algorithm for dynamic systems by transfer functions based on the impulse responses

Author

Listed:
  • Ling Xu
  • Feng Ding
  • Quanmin Zhu

Abstract

This paper develops a parameter estimation algorithm for linear continuous-time systems based on the hierarchical principle and the parameter decomposition strategy. Although the linear continuous-time system is a linear system, its output response is a highly nonlinear function with respect to the system parameters. In order to propose a direct estimation algorithm, a criterion function is constructed between the response output and the observation output by means of the discrete sampled data. Then a scheme by combining the Newton iteration and the least squares iteration is builded to minimise the criterion function and derive the parameter estimation algorithm. In light of the different features between the system parameters and the output function, two sub-algorithms are derived by using the parameter decomposition. In order to remove the associate terms between the two sub-algorithms, a Newton and least squares iterative algorithm is deduced to identify system parameters. Compared with the Newton iterative estimation algorithm without the parameter decomposition, the complexity of the hierarchical Newton and least squares iterative estimation algorithm is reduced because the dimension of the Hessian matrix is lessened after the parameter decomposition. The experimental results show that the proposed algorithm has good performance.

Suggested Citation

  • Ling Xu & Feng Ding & Quanmin Zhu, 2019. "Hierarchical Newton and least squares iterative estimation algorithm for dynamic systems by transfer functions based on the impulse responses," International Journal of Systems Science, Taylor & Francis Journals, vol. 50(1), pages 141-151, January.
  • Handle: RePEc:taf:tsysxx:v:50:y:2019:i:1:p:141-151
    DOI: 10.1080/00207721.2018.1544303
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2018.1544303
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2018.1544303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huafeng Xia & Feiyan Chen, 2020. "Filtering-Based Parameter Identification Methods for Multivariable Stochastic Systems," Mathematics, MDPI, vol. 8(12), pages 1-19, December.
    2. Hao Ma & Jian Pan & Lei Lv & Guanghui Xu & Feng Ding & Ahmed Alsaedi & Tasawar Hayat, 2019. "Recursive Algorithms for Multivariable Output-Error-Like ARMA Systems," Mathematics, MDPI, vol. 7(6), pages 1-18, June.
    3. Junxia Ma & Qiuling Fei & Fan Guo & Weili Xiong, 2019. "Variational Bayesian Iterative Estimation Algorithm for Linear Difference Equation Systems," Mathematics, MDPI, vol. 7(12), pages 1-16, November.
    4. Feng Ding & Jian Pan & Ahmed Alsaedi & Tasawar Hayat, 2019. "Gradient-Based Iterative Parameter Estimation Algorithms for Dynamical Systems from Observation Data," Mathematics, MDPI, vol. 7(5), pages 1-15, May.
    5. Zhou, Yihong & Zhang, Xiao & Ding, Feng, 2022. "Partially-coupled nonlinear parameter optimization algorithm for a class of multivariate hybrid models," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    6. Mi, Wen & Qian, Tao, 2022. "System identification of hammerstein models by using backward shift algorithm," Applied Mathematics and Computation, Elsevier, vol. 413(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:50:y:2019:i:1:p:141-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.