IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v398y2021ics0096300321000424.html
   My bibliography  Save this article

Training set fuzzification based on histogram to increase the performance of a neural network

Author

Listed:
  • Volna, Eva
  • Jarusek, Robert
  • Kotyrba, Martin
  • Zacek, Jaroslav

Abstract

This article describes a new approach which uses a histogram to fuzzify variables. We used a linguistic expression to form a training set output vector. The whole fuzzification process of the training set output vector is described in detail. This proposed method was verified on a real data set. We found out that the adaptation of a neural network by fuzzified output vectors has a considerably lower prediction error rate compared with another one without such transformation. Another advantage of the fuzzification approach is that only one neural network can be used for more various data sets with a high range of data attributes (units, thousands, millions). The proposed improvements increase the performance of neural networks, which is presented in the final part.

Suggested Citation

  • Volna, Eva & Jarusek, Robert & Kotyrba, Martin & Zacek, Jaroslav, 2021. "Training set fuzzification based on histogram to increase the performance of a neural network," Applied Mathematics and Computation, Elsevier, vol. 398(C).
  • Handle: RePEc:eee:apmaco:v:398:y:2021:i:c:s0096300321000424
    DOI: 10.1016/j.amc.2021.125994
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321000424
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.125994?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marek Šimon & Iveta Dirgová Luptáková & Ladislav Huraj & Marián Hosťovecký & Jiří Pospíchal, 2017. "Combined Heuristic Attack Strategy on Complex Networks," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yihong & Zhang, Xiao & Ding, Feng, 2022. "Partially-coupled nonlinear parameter optimization algorithm for a class of multivariate hybrid models," Applied Mathematics and Computation, Elsevier, vol. 414(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Sheng & Liu, Wenwen & Wu, Ruizi & Li, Junli, 2023. "An adaptive attack model to network controllability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:398:y:2021:i:c:s0096300321000424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.