H∞ sliding mode based scaled consensus control for linear multi-agent systems with disturbances
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2016.08.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lin Zhao & Yingmin Jia, 2016. "Neural network-based adaptive consensus tracking control for multi-agent systems under actuator faults," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(8), pages 1931-1942, June.
- Xiao, Qiang & Huang, Zhenkun, 2016. "Consensus of multi-agent system with distributed control on time scales," Applied Mathematics and Computation, Elsevier, vol. 277(C), pages 54-71.
- Shang, Yilun, 2016. "Consensus seeking over Markovian switching networks with time-varying delays and uncertain topologies," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1234-1245.
- Zhao, Lin & Jia, Yingmin, 2015. "Finite-time consensus for second-order stochastic multi-agent systems with nonlinear dynamics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 278-290.
- Ma, Qian & Miao, Guoying, 2015. "Output consensus for heterogeneous multi-agent systems with linear dynamics," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 548-555.
- He, Xiaoyan & Wang, Qingyun & Yu, Wenwu, 2015. "Distributed finite-time containment control for second-order nonlinear multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 509-521.
- Li, Jinsha & Li, Junmin, 2015. "Iterative learning control approach for a kind of heterogeneous multi-agent systems with distributed initial state learning," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 1044-1057.
- Feng, Tao & Zhang, Huaguang & Luo, Yanhong & Liang, Hongjing, 2015. "Consensus rate regulation for general linear multi-agent systems under directed topology," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 845-859.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhao, Lin & Yu, Jinpeng & Lin, Chong & Yu, Haisheng, 2017. "Distributed adaptive fixed-time consensus tracking for second-order multi-agent systems using modified terminal sliding mode," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 23-35.
- Liu, Wenhui & Lu, Junwei & Xu, Shengyuan & Li, Yongmin & Zhang, Zhengqiang, 2019. "Sampled-data controller design and stability analysis for nonlinear systems with input saturation and disturbances," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 14-27.
- Liang, Hongjing & Zhou, Yu & Ma, Hui & Wu, Qinghui & Yu, Zhandong, 2018. "Distributed-observer-based output synchronization for heterogeneous double-integral networks," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 535-544.
- Samar, Mahvish & Farooq, Aamir & Li, Hanyu & Mu, Chunlai, 2019. "Sensitivity analysis for the generalized Cholesky factorization," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
- Zhang, Yanhui & Liang, Hongjing & Ma, Hui & Zhou, Qi & Yu, Zhandong, 2018. "Distributed adaptive consensus tracking control for nonlinear multi-agent systems with state constraints," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 16-32.
- Li, Hongjie & Zhu, Yinglian & jing, Liu & ying, Wang, 2018. "Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 1-15.
- Wang, Jinhuan & Xu, Yuling & Xu, Yong & Yang, Dedong, 2019. "Time-varying formation for high-order multi-agent systems with external disturbances by event-triggered integral sliding mode control," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 333-343.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhao, Lin & Yu, Jinpeng & Lin, Chong & Yu, Haisheng, 2017. "Distributed adaptive fixed-time consensus tracking for second-order multi-agent systems using modified terminal sliding mode," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 23-35.
- Li, Hongjie & Zhu, Yinglian & jing, Liu & ying, Wang, 2018. "Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 1-15.
- Liu, Yifan & Su, Housheng, 2019. "Containment control of second-order multi-agent systems via intermittent sampled position data communication," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
- Tan, Yushun & Fei, Shumin & Liu, Jinliang & Zhang, Dan, 2019. "Asynchronous adaptive event-triggered tracking control for multi-agent systems with stochastic actuator faults," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 482-496.
- Wang, Lingyu & Huang, Tingwen & Xiao, Qiang, 2018. "Global exponential synchronization of nonautonomous recurrent neural networks with time delays on time scales," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 263-275.
- Cheng-Yu Tang & Jun-Ting Lin, 2019. "Bidirectional Power Flow Control of a Multi Input Converter for Energy Storage System," Energies, MDPI, vol. 12(19), pages 1-16, September.
- Thang Nguyen Trong & Minh Nguyen Duc, 2017. "Sliding Surface in Consensus Problem of Multi-Agent Rigid Manipulators with Neural Network Controller," Energies, MDPI, vol. 10(12), pages 1-15, December.
- Jing Bai & Yongguang Yu, 2018. "Neural Networks Based Adaptive Consensus for a Class of Fractional-Order Uncertain Nonlinear Multiagent Systems," Complexity, Hindawi, vol. 2018, pages 1-10, November.
- María Jesús García-Ligero & Aurora Hermoso-Carazo & Josefa Linares-Pérez, 2020. "Distributed Fusion Estimation with Sensor Gain Degradation and Markovian Delays," Mathematics, MDPI, vol. 8(11), pages 1-19, November.
- Guo, Wanli & He, Wennuo & Shi, Lili & Sun, Wen & Lu, Xiaoqing, 2021. "Fixed-time consensus tracking for nonlinear stochastically disturbed multi-agent systems via discontinuous protocols," Applied Mathematics and Computation, Elsevier, vol. 400(C).
- Li, Zanhua & Chen, Xiangyong & Ding, Shihong & Liu, Yang & Qiu, Jianlong, 2020. "TCP/AWM network congestion algorithm with funnel control and arbitrary setting time," Applied Mathematics and Computation, Elsevier, vol. 385(C).
- Li, Jian & Wu, Chun-Yu, 2017. "Finite-time fault detection filter design for discrete-time interconnected systems with average dwell time," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 259-270.
- Mo, Lipo & Yuan, Xiaolin & Yu, Yongguang, 2021. "Containment control for multi-agent systems with fractional Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 398(C).
- Cai, Yuliang & Zhang, Huaguang & Liu, Yang & He, Qiang, 2020. "Distributed bipartite finite-time event-triggered output consensus for heterogeneous linear multi-agent systems under directed signed communication topology," Applied Mathematics and Computation, Elsevier, vol. 378(C).
- Mahmoud, Magdi S. & Almutairi, Naif B., 2016. "Feedback fuzzy control for quantized networked systems with random delays," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 80-97.
- Shao, Jinliang & Shi, Lei & Cao, Mengtao & Xia, Hong, 2018. "Distributed containment control for asynchronous discrete-time second-order multi-agent systems with switching topologies," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 47-59.
- He, Xiaoyan & Wang, Qingyun, 2017. "Distributed finite-time leaderless consensus control for double-integrator multi-agent systems with external disturbances," Applied Mathematics and Computation, Elsevier, vol. 295(C), pages 65-76.
- He, Xiaoyan & Hao, Yuqing & Wang, Qingyun, 2019. "Leaderless finite-time consensus for second-order Lipschitz nonlinear multi-agent systems with settling time estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 280-289.
- María Jesús García-Ligero & Aurora Hermoso-Carazo & Josefa Linares-Pérez, 2022. "Distributed Fusion Estimation in Network Systems Subject to Random Delays and Deception Attacks," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
- Du, Yingxue & Wang, Yijing & Zuo, Zhiqiang & Zhang, Wentao, 2022. "Event-triggered bipartite consensus for multi-agent systems subject to multiplicative and additive noises," Applied Mathematics and Computation, Elsevier, vol. 429(C).
More about this item
Keywords
Multi-agent systems; Scaled consensus; H∞ sliding mode control; External disturbances;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:292:y:2017:i:c:p:375-389. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.