IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v312y2017icp23-35.html
   My bibliography  Save this article

Distributed adaptive fixed-time consensus tracking for second-order multi-agent systems using modified terminal sliding mode

Author

Listed:
  • Zhao, Lin
  • Yu, Jinpeng
  • Lin, Chong
  • Yu, Haisheng

Abstract

This paper investigates the fixed-time consensus tracking problems for second-order multi-agent systems with unknown external disturbances. Firstly, a fixed-time terminal sliding mode (FTTSM) is proposed, which can avoid the singularity problem. Then, two continuous distributed consensus tracking control laws with adaptive updating laws are designed respectively, in which the upper bounds of external disturbances are not required. It is proved that the two control laws can both guarantee the consensus tracking errors converge into the desired regions including the origin in fixed time. A simulation example is given to demonstrate the effectiveness of proposed methods.

Suggested Citation

  • Zhao, Lin & Yu, Jinpeng & Lin, Chong & Yu, Haisheng, 2017. "Distributed adaptive fixed-time consensus tracking for second-order multi-agent systems using modified terminal sliding mode," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 23-35.
  • Handle: RePEc:eee:apmaco:v:312:y:2017:i:c:p:23-35
    DOI: 10.1016/j.amc.2017.05.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317303612
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.05.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shang, Yilun, 2016. "Consensus seeking over Markovian switching networks with time-varying delays and uncertain topologies," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1234-1245.
    2. Song, Xiaona & Men, Yunzhe & Zhou, Jianping & Zhao, Junjie & Shen, Hao, 2017. "Event-triggered H∞ control for networked discrete-time Markov jump systems with repeated scalar nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 123-132.
    3. Sakurama, Kazunori & Miura, Masashi, 2017. "Distributed constraint optimization on networked multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 272-281.
    4. Li, Jinsha & Li, Junmin, 2015. "Iterative learning control approach for a kind of heterogeneous multi-agent systems with distributed initial state learning," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 1044-1057.
    5. He, Xiaoyan & Wang, Qingyun, 2017. "Distributed finite-time leaderless consensus control for double-integrator multi-agent systems with external disturbances," Applied Mathematics and Computation, Elsevier, vol. 295(C), pages 65-76.
    6. Xiao, Qiang & Huang, Zhenkun, 2016. "Consensus of multi-agent system with distributed control on time scales," Applied Mathematics and Computation, Elsevier, vol. 277(C), pages 54-71.
    7. Zhao, Lin & Jia, Yingmin, 2015. "Finite-time consensus for second-order stochastic multi-agent systems with nonlinear dynamics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 278-290.
    8. Ma, Qian & Miao, Guoying, 2015. "Output consensus for heterogeneous multi-agent systems with linear dynamics," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 548-555.
    9. Zhao, Lin & Jia, Yingmin & Yu, Jinpeng & Du, Junping, 2017. "H∞ sliding mode based scaled consensus control for linear multi-agent systems with disturbances," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 375-389.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hongjie & Zhu, Yinglian & jing, Liu & ying, Wang, 2018. "Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 1-15.
    2. Yin, Zeyang & Luo, Jianjun & Wei, Caisheng, 2019. "Quasi fixed-time fault-tolerant control for nonlinear mechanical systems with enhanced performance," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 157-173.
    3. Yang, Haijiao & Ye, Dan, 2020. "Time-varying formation tracking control for high-order nonlinear multi-agent systems in fixed-time framework," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    4. Zhang, Weijian & Du, Haibo & Chu, Zhaobi, 2022. "Robust discrete-time non-smooth consensus protocol for multi-agent systems via super-twisting algorithm," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    5. Sharafian, Amin & Kanesan, Jeevan & Khairuddin, Anis Salwa Mohd & Ramanathan, Anand & Sharifi, Alireza & Bai, Xiaoshan, 2023. "A novel approach to state estimation of HIV infection dynamics using fixed-time fractional order observer," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Lin & Jia, Yingmin & Yu, Jinpeng & Du, Junping, 2017. "H∞ sliding mode based scaled consensus control for linear multi-agent systems with disturbances," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 375-389.
    2. Li, Hongjie & Zhu, Yinglian & jing, Liu & ying, Wang, 2018. "Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 1-15.
    3. Cai, Yuliang & Zhang, Huaguang & Liu, Yang & He, Qiang, 2020. "Distributed bipartite finite-time event-triggered output consensus for heterogeneous linear multi-agent systems under directed signed communication topology," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    4. Samar, Mahvish & Farooq, Aamir & Li, Hanyu & Mu, Chunlai, 2019. "Sensitivity analysis for the generalized Cholesky factorization," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    5. Wang, Jinhuan & Xu, Yuling & Xu, Yong & Yang, Dedong, 2019. "Time-varying formation for high-order multi-agent systems with external disturbances by event-triggered integral sliding mode control," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 333-343.
    6. Zhang, Yanhui & Liang, Hongjing & Ma, Hui & Zhou, Qi & Yu, Zhandong, 2018. "Distributed adaptive consensus tracking control for nonlinear multi-agent systems with state constraints," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 16-32.
    7. Ye, Dan & Yang, Xiang & Su, Lei, 2017. "Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 36-48.
    8. Wang, Jing & Liang, Kun & Huang, Xia & Wang, Zhen & Shen, Hao, 2018. "Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 247-262.
    9. Wang, Lingyu & Huang, Tingwen & Xiao, Qiang, 2018. "Global exponential synchronization of nonautonomous recurrent neural networks with time delays on time scales," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 263-275.
    10. Khanh Hieu Nguyen & Sung Hyun Kim, 2022. "Event-Triggered Non-PDC Filter Design of Fuzzy Markovian Jump Systems under Mismatch Phenomena," Mathematics, MDPI, vol. 10(16), pages 1-25, August.
    11. Long, Mingkang & Su, Housheng & Liu, Bo, 2019. "Second-order controllability of two-time-scale multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 299-313.
    12. Li, Jian & Wu, Chun-Yu, 2017. "Finite-time fault detection filter design for discrete-time interconnected systems with average dwell time," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 259-270.
    13. Mei, Yu & Wang, Guanqi & Shen, Hao, 2023. "Adaptive Event-Triggered L2−L∞ Control of Semi-Markov Jump Distributed Parameter Systems," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    14. Mo, Lipo & Yuan, Xiaolin & Yu, Yongguang, 2021. "Containment control for multi-agent systems with fractional Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    15. Shi, Chong-Xiao & Yang, Guang-Hong, 2018. "Robust consensus control for a class of multi-agent systems via distributed PID algorithm and weighted edge dynamics," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 73-88.
    16. Mahmoud, Magdi S. & Almutairi, Naif B., 2016. "Feedback fuzzy control for quantized networked systems with random delays," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 80-97.
    17. Fan, Yanyan & Jin, Zhenlin & Luo, Xiaoyuan & Guo, Baosu, 2022. "Robust finite-time consensus control for Euler–Lagrange multi-agent systems subject to switching topologies and uncertainties," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    18. Zhang, Weijian & Du, Haibo & Chu, Zhaobi, 2022. "Robust discrete-time non-smooth consensus protocol for multi-agent systems via super-twisting algorithm," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    19. Wang, Bo & Yan, Juan & Cheng, Jun & Zhong, Shouming, 2017. "New criteria of stability analysis for generalized neural networks subject to time-varying delayed signals," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 322-333.
    20. Shao, Jinliang & Shi, Lei & Cao, Mengtao & Xia, Hong, 2018. "Distributed containment control for asynchronous discrete-time second-order multi-agent systems with switching topologies," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 47-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:312:y:2017:i:c:p:23-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.