IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v514y2019icp280-289.html
   My bibliography  Save this article

Leaderless finite-time consensus for second-order Lipschitz nonlinear multi-agent systems with settling time estimation

Author

Listed:
  • He, Xiaoyan
  • Hao, Yuqing
  • Wang, Qingyun

Abstract

The leaderless finite-time consensus for second-order Lipschitz nonlinear multi-agent systems with partial-state coupling is investigated, where the communication network is weighted undirected and weighted. A new distributed control algorithm is proposed by designing the appropriate control parameters in the undirected connected communication topology. By using the algebraic graph theory, matrix theory, power integrator technique, and Lyapunov control approach, the leaderless finite-time consensus is achieved for the second-order Lipschitz nonlinear multi-agent systems. The main contribution of this paper is that, the settling time can be estimated by computing the value of the Lyapunov function at the initial point. Finally, the effectiveness of the results is illustrated by some numerical simulations.

Suggested Citation

  • He, Xiaoyan & Hao, Yuqing & Wang, Qingyun, 2019. "Leaderless finite-time consensus for second-order Lipschitz nonlinear multi-agent systems with settling time estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 280-289.
  • Handle: RePEc:eee:phsmap:v:514:y:2019:i:c:p:280-289
    DOI: 10.1016/j.physa.2018.09.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118312160
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Xiaoyan & Wang, Qingyun & Yu, Wenwu, 2015. "Distributed finite-time containment control for second-order nonlinear multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 509-521.
    2. He, Xiaoyan & Wang, Qingyun & Yu, Wenwu, 2015. "Finite-time distributed cooperative attitude tracking control for multiple rigid spacecraft," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 724-734.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhicheng & Ma, Zhongjun & Wang, Yi, 2019. "Partial component consensus of leader-following multi-agent systems via intermittent pinning control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Xiaoyan & Wang, Qingyun, 2017. "Distributed finite-time leaderless consensus control for double-integrator multi-agent systems with external disturbances," Applied Mathematics and Computation, Elsevier, vol. 295(C), pages 65-76.
    2. Zhao, Lin & Jia, Yingmin & Yu, Jinpeng & Du, Junping, 2017. "H∞ sliding mode based scaled consensus control for linear multi-agent systems with disturbances," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 375-389.
    3. Liu, Yifan & Su, Housheng, 2019. "Containment control of second-order multi-agent systems via intermittent sampled position data communication," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    4. Xing, Ying & He, Xinyi & Li, Xiaodi, 2023. "Lyapunov conditions for finite-time stability of disturbed nonlinear impulsive systems," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    5. Tianyu Yang & Bin Wang & Peng Chen, 2020. "Design of a Finite-Time Terminal Sliding Mode Controller for a Nonlinear Hydro-Turbine Governing System," Energies, MDPI, vol. 13(3), pages 1-14, February.
    6. He, Xiaoyan & Wang, Qingyun & Yu, Wenwu, 2015. "Distributed finite-time containment control for second-order nonlinear multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 509-521.
    7. Tian, Yuqiang & Wang, Bin & Chen, Peng & Yang, Ying, 2021. "Finite-time Takagi–Sugeno fuzzy controller design for hydraulic turbine governing systems with mechanical time delays," Renewable Energy, Elsevier, vol. 173(C), pages 614-624.
    8. Li, Zanhua & Chen, Xiangyong & Ding, Shihong & Liu, Yang & Qiu, Jianlong, 2020. "TCP/AWM network congestion algorithm with funnel control and arbitrary setting time," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    9. Du, Haibo & Yu, Bo & Wei, Jiajia & Zhang, Jun & Wu, Di & Tao, Weiqing, 2020. "Attitude trajectory planning and attitude control for quad-rotor aircraft based on finite-time control technique," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    10. Du, Yingxue & Wang, Yijing & Zuo, Zhiqiang & Zhang, Wentao, 2022. "Event-triggered bipartite consensus for multi-agent systems subject to multiplicative and additive noises," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    11. Zhang, Meijie & Yang, Xinsong & Xiang, Zhengrong & Liu, Xiaoyang, 2023. "Consensus of nonlinear MAS via double nonidentical mode-dependent event-triggered switching control," Applied Mathematics and Computation, Elsevier, vol. 453(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:514:y:2019:i:c:p:280-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.