IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v328y2018icp263-275.html
   My bibliography  Save this article

Global exponential synchronization of nonautonomous recurrent neural networks with time delays on time scales

Author

Listed:
  • Wang, Lingyu
  • Huang, Tingwen
  • Xiao, Qiang

Abstract

This paper is concerned on the global exponential synchronization in timescale sense for a class of nonautonomous recurrent neural networks (NRNNs) with discrete-time delays on time scales. Firstly, a timescale-type comparison result is given based on the induction principle of time scales. Then by the constructed comparison lemma, the theory of time scales and analytical techniques, several synchronization criteria for the driven and response NRNNs are obtained. Moreover, several examples are given to show the effectiveness and validity of the main results. The obtained synchronization criteria improve or extend some existing ones in the literature.

Suggested Citation

  • Wang, Lingyu & Huang, Tingwen & Xiao, Qiang, 2018. "Global exponential synchronization of nonautonomous recurrent neural networks with time delays on time scales," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 263-275.
  • Handle: RePEc:eee:apmaco:v:328:y:2018:i:c:p:263-275
    DOI: 10.1016/j.amc.2018.01.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031830050X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.01.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Ruoxia & Cao, Jinde & Alsaedi, Ahmad & Alsaadi, Fuad, 2017. "Exponential and fixed-time synchronization of Cohen–Grossberg neural networks with time-varying delays and reaction-diffusion terms," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 37-51.
    2. Chen, Hao & Zhong, Shouming & Shao, Jinliang, 2015. "Exponential stability criterion for interval neural networks with discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 121-130.
    3. Xiao, Qiang & Huang, Zhenkun, 2016. "Consensus of multi-agent system with distributed control on time scales," Applied Mathematics and Computation, Elsevier, vol. 277(C), pages 54-71.
    4. Zhang, Lan & Yang, Xinsong & Xu, Chen & Feng, Jianwen, 2017. "Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbations via time-delayed impulsive control," Applied Mathematics and Computation, Elsevier, vol. 306(C), pages 22-30.
    5. Shao, Hanyong & Li, Huanhuan & Zhu, Chuanjie, 2017. "New stability results for delayed neural networks," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 324-334.
    6. Shi, Yanchao & Cao, Jinde & Chen, Guanrong, 2017. "Exponential stability of complex-valued memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 222-234.
    7. Li, Tao & Fei, Shu-min & Zhang, Kan-jian, 2008. "Synchronization control of recurrent neural networks with distributed delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 982-996.
    8. Song, Chuan-Jing & Zhang, Yi, 2017. "Conserved quantities for Hamiltonian systems on time scales," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 24-36.
    9. Ge, Chao & Wang, Bingfang & Wei, Xian & Liu, Yajuan, 2017. "Exponential synchronization of a class of neural networks with sampled-data control," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 150-161.
    10. Zhang, Xingpeng & Li, Dong & Zhang, Xiaohong, 2017. "Adaptive fuzzy impulsive synchronization of chaotic systems with random parameters," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 77-83.
    11. Zhang, Zhi-Ming & He, Yong & Wu, Min & Wang, Qing-Guo, 2017. "Exponential synchronization of chaotic neural networks with time-varying delay via intermittent output feedback approach," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 121-132.
    12. Hamza, Alaa E. & Oraby, Karima M., 2015. "Semigroups of operators and abstract dynamic equations on time scales," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 334-348.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao, Zhang & Xing-yuan, Wang & Peng-fei, Yan & Yu-jie, Sun, 2020. "Combination synchronization and stability analysis of time-varying complex-valued neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Kaibo & Wang, Jun & Zhong, Shouming & Zhang, Xiaojun & Liu, Yajuan & Cheng, Jun, 2019. "New reliable nonuniform sampling control for uncertain chaotic neural networks under Markov switching topologies," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 169-193.
    2. Wang, Pengfei & Zou, Wenqing & Su, Huan, 2019. "Stability of complex-valued impulsive stochastic functional differential equations on networks with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 338-354.
    3. Mahmoud, Magdi S. & Almutairi, Naif B., 2016. "Feedback fuzzy control for quantized networked systems with random delays," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 80-97.
    4. Wang, Jun & Shi, Kaibo & Huang, Qinzhen & Zhong, Shouming & Zhang, Dian, 2018. "Stochastic switched sampled-data control for synchronization of delayed chaotic neural networks with packet dropout," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 211-230.
    5. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    6. Zhang, Guodong & Zeng, Zhigang, 2018. "Exponential stability for a class of memristive neural networks with mixed time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 544-554.
    7. Li, Xiaoqing & She, Kun & Zhong, Shouming & Shi, Kaibo & Kang, Wei & Cheng, Jun & Yu, Yongbin, 2018. "Extended robust global exponential stability for uncertain switched memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 271-290.
    8. Feng, Zongying & Shao, Hanyong & Shao, Lin, 2020. "Further results on event-triggered H∞ networked control for neural networks with stochastic cyber-attacks," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    9. Liu, Yan & Mei, Jingling & Li, Wenxue, 2018. "Stochastic stabilization problem of complex networks without strong connectedness," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 304-315.
    10. Miranda-Colorado, Roger, 2020. "Parameter identification of conservative Hamiltonian systems using first integrals," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    11. Tu, Zhengwen & Zhao, Yongxiang & Ding, Nan & Feng, Yuming & Zhang, Wei, 2019. "Stability analysis of quaternion-valued neural networks with both discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 342-353.
    12. Xu, Yao & Yu, Jintong & Li, Wenxue & Feng, Jiqiang, 2021. "Global asymptotic stability of fractional-order competitive neural networks with multiple time-varying-delay links," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    13. Fang, Liandi & Ma, Li & Ding, Shihong & Zhao, Dean, 2019. "Finite-time stabilization for a class of high-order stochastic nonlinear systems with an output constraint," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 63-79.
    14. Peng, Dongxue & Li, Xiaodi & Rakkiyappan, R. & Ding, Yanhui, 2021. "Stabilization of stochastic delayed systems: Event-triggered impulsive control," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    15. Zhao, Lin & Jia, Yingmin & Yu, Jinpeng & Du, Junping, 2017. "H∞ sliding mode based scaled consensus control for linear multi-agent systems with disturbances," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 375-389.
    16. Wang, Pengfei & Li, Shaoyu & Su, Huan, 2020. "Stabilization of complex-valued stochastic functional differential systems on networks via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    17. Cao, Yang & Udhayakumar, K. & Veerakumari, K. Pradeepa & Rakkiyappan, R., 2022. "Memory sampled data control for switched-type neural networks and its application in image secure communications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 564-587.
    18. Yueping Sun & Li Ma & Dean Zhao & Shihong Ding, 2018. "A Compound Controller Design for a Buck Converter," Energies, MDPI, vol. 11(9), pages 1-17, September.
    19. Jinlong Shu & Lianglin Xiong & Tao Wu & Zixin Liu, 2019. "Stability Analysis of Quaternion-Valued Neutral-Type Neural Networks with Time-Varying Delay," Mathematics, MDPI, vol. 7(1), pages 1-23, January.
    20. Liu, Yifan & Su, Housheng, 2019. "Containment control of second-order multi-agent systems via intermittent sampled position data communication," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:328:y:2018:i:c:p:263-275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.