IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v313y2017icp259-270.html
   My bibliography  Save this article

Finite-time fault detection filter design for discrete-time interconnected systems with average dwell time

Author

Listed:
  • Li, Jian
  • Wu, Chun-Yu

Abstract

In this paper, we present an approach to finite-time robust fault detection filter design for interconnected systems with disconnected interconnections among these subsystems. Taking various disconnected interconnections into account, a switched scheme is proposed to analysis these complex cases. By modeling these cases of disconnections into independent subsystems, a switching signal is introduced to specify which subsystem is activated. In the aid of the average dwell time method, sufficient conditions on existence of the desired filter are derived in term of linear matrices inequalities, which guarantee the augmented system is finite-time boundedness and achieve the H∞ performance. A numerical example is used to illustrate the effectiveness of the proposed approach.

Suggested Citation

  • Li, Jian & Wu, Chun-Yu, 2017. "Finite-time fault detection filter design for discrete-time interconnected systems with average dwell time," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 259-270.
  • Handle: RePEc:eee:apmaco:v:313:y:2017:i:c:p:259-270
    DOI: 10.1016/j.amc.2017.05.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317303831
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.05.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Dongsheng, 2017. "Fault detection for discrete-time linear systems based on descriptor observer approach," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 575-585.
    2. Zhai, Ding & Lu, An-Yang & Li, Jing-Hao & Zhang, Qing-Ling, 2016. "Simultaneous fault detection and control for switched linear systems with mode-dependent average dwell-time," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 767-792.
    3. Zhao, Lin & Jia, Yingmin, 2015. "Finite-time consensus for second-order stochastic multi-agent systems with nonlinear dynamics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 278-290.
    4. Wang, Guoliang & Li, Zhiqiang & Zhang, Qingling & Yang, Chunyu, 2017. "Robust finite-time stability and stabilization of uncertain Markovian jump systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 377-393.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiong, Jun & Chang, Xiao-Heng & Yi, Xiaojian, 2018. "Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 774-788.
    2. Yu, Qiang & Lv, Hao, 2020. "The new stability criteria of discrete-time switched systems with an improved mode dependent average dwell time approach," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    3. Sakthivel, Rathinasamy & Suveetha, V.T. & Nithya, Venkatesh & Sakthivel, Ramalingam, 2020. "Finite-time fault detection filter design for complex systems with multiple stochastic communication and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Jun & Chang, Xiao-Heng & Yi, Xiaojian, 2018. "Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 774-788.
    2. Du, Dongsheng, 2017. "Fault detection for discrete-time linear systems based on descriptor observer approach," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 575-585.
    3. Zhao, Xiao-Qi & Guo, Shun & Long, Yue & Zhong, Guang-Xin, 2022. "Simultaneous fault detection and control for discrete-time switched systems under relaxed persistent dwell time switching," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    4. Du, Dongsheng & Cocquempot, Vincent & Jiang, Bin, 2019. "Robust fault estimation observer design for switched systems with unknown input," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 70-83.
    5. Lin, Xiangze & Zhang, Wanli & Huang, Shuaiting & Zheng, Enlai, 2020. "Finite-time stabilization of input-delay switched systems," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    6. Feng, Bo & Feng, Zhiguang & Li, Peng, 2023. "Improved results on reachable set synthesis of Markovian jump systems with time-varying delays: General asynchronous control approaches," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    7. Wang, Guoliang & Cai, Hongyang & Zhang, Qingling & Yang, Chunyu, 2017. "Stabilization of stochastic delay systems via a disordered controller," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 98-109.
    8. Zhao, Lin & Jia, Yingmin & Yu, Jinpeng & Du, Junping, 2017. "H∞ sliding mode based scaled consensus control for linear multi-agent systems with disturbances," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 375-389.
    9. Liu, Lei & Zhou, Qi & Liang, Hongjing & Wang, Lijie, 2017. "Stability and Stabilization of Nonlinear Switched Systems Under Average Dwell Time," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 77-94.
    10. Zhai, Ding & Lu, An-Yang & Dong, Jiuxiang & Zhang, Qing-Ling, 2016. "Asynchronous H∞ filtering for 2D discrete Markovian jump systems with sensor failure," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 60-79.
    11. Harshavarthini, S. & Sakthivel, R. & Ma, Yong-Ki & Muslim, M., 2020. "Finite-time resilient fault-tolerant investment policy scheme for chaotic nonlinear finance system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    12. Harshavarthini, S. & Kwon, O.M. & Lee, S.M., 2022. "Uncertainty and disturbance estimator-based resilient tracking control design for fuzzy semi-Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    13. Göksu, Gökhan & Başer, Ulviye, 2021. "Finite-time stability for switched linear systems by Jordan decomposition," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    14. Liu, Xuan & Zhai, Ding & He, Da-Kuo & Chang, Xiao-Heng, 2018. "Simultaneous fault detection and control for continuous-time Markovian jump systems with partially unknown transition probabilities," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 469-486.
    15. Wu, Kai-Ning & Sun, Han-Xiao & Yang, Baoqing & Lim, Cheng-Chew, 2018. "Finite-time boundary control for delay reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 52-63.
    16. Chan, Joseph Chang Lun & Tan, Chee Pin & Trinh, Hieu & Kamal, Md Abdus Samad & Chiew, Yeong Shiong, 2019. "Robust fault reconstruction for a class of non-infinitely observable descriptor systems using two sliding mode observers in cascade," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 78-92.
    17. Zhai, Ding & Lu, An-Yang & Dong, Jiuxiang & Zhang, Qing-Ling, 2017. "Stability analysis and state feedback control of continuous-time T–S fuzzy systems via anew switched fuzzy Lyapunov function approach," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 586-599.
    18. Guo, Wanli & He, Wennuo & Shi, Lili & Sun, Wen & Lu, Xiaoqing, 2021. "Fixed-time consensus tracking for nonlinear stochastically disturbed multi-agent systems via discontinuous protocols," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    19. Xikui Liu & Wencong Li & Chenxin Yao & Yan Li, 2022. "Finite-Time Guaranteed Cost Control for Markovian Jump Systems with Time-Varying Delays," Mathematics, MDPI, vol. 10(12), pages 1-12, June.
    20. Gao, Lijun & Wang, Zhenyue & Sun, Tao & Cao, Zhengbao, 2023. "Stability analysis for hybrid deterministic system under delay-dependent impulses uniting properties of edges," Applied Mathematics and Computation, Elsevier, vol. 444(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:313:y:2017:i:c:p:259-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.