IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v273y2022ics0378377422004632.html
   My bibliography  Save this article

Nitrate loss by runoff in response to rainfall amount category and different combinations of fertilization and cultivation in sloping croplands

Author

Listed:
  • Li, Tianyang
  • Zhang, Yi
  • He, Binghui
  • Wu, Xiaoyu
  • Du, Yingni

Abstract

Nitrate (NO3-N) loss by runoff from agricultural lands causes substantial soil fertility loss and water quality degradation in downstream aquatic systems. Rainfall, fertilization and cultivation direction are key factors influencing NO3-N loss in runoff from sloping croplands; however, these effects are still elusive. The responses of runoff NO3-N and total nitrogen (TN) losses to rainfall amount, fertilization and cultivation direction were studied under more than 100 natural rainfall events occurring between 2008 and 2020 in sloping croplands. Five treatments (three replications for each) including CK (no fertilizer + downslope cultivation), T1 (combined manure and chemical fertilizers + downslope cultivation), T2 (chemical fertilizer + downslope cultivation), T3 (1.5-fold chemical fertilizer + downslope cultivation) and T4 (chemical fertilizer + contour cultivation) were deployed on fifteen plots (8 m long × 4 m wide for each). The results showed that runoff depth was 83.9–318 % higher in the large rainstorms than in the other rainfall events, and 29.3–77.8 % higher in the unfertilized plots (i.e., CK) than in the fertilized plots (i.e., T1, T2, T3 and T4). The runoff NO3-N concentration, on average, was significantly higher in the moderate and heavy rains than in the light rain and large rainstorms but did not differ in these five treatments. Conversely, the average TN concentration was not affected by the rainfall amount category but was significantly higher in the unfertilized plots than in the fertilized plots. Significantly higher losses of NO3-N and TN were found in the large rainstorms, implying the dominant role of runoff rather than nutrient concentrations. The unfertilized plots presented 50–100 % and 66.7–150 % higher NO3-N and TN losses, respectively, than the fertilized plots. The NO3-N: TN ratio differed markedly by rainfall amount category, and was higher in the contour cultivation (i.e., T4) than in the downslope cultivation (i.e., T2). Our results have great significance for understanding the dynamics of NO3-N loss by runoff driven by changeable rainfall features and intense agricultural management practices in sloping croplands.

Suggested Citation

  • Li, Tianyang & Zhang, Yi & He, Binghui & Wu, Xiaoyu & Du, Yingni, 2022. "Nitrate loss by runoff in response to rainfall amount category and different combinations of fertilization and cultivation in sloping croplands," Agricultural Water Management, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:agiwat:v:273:y:2022:i:c:s0378377422004632
    DOI: 10.1016/j.agwat.2022.107916
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422004632
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Linhong & Zhang, Bin & Wang, Mingzhu, 2007. "Effects of antecedent soil moisture on runoff and soil erosion in alley cropping systems," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 54-62, December.
    2. Cherobim, Verediana Fernanda & Huang, Chi-Hua & Favaretto, Nerilde, 2017. "Tillage system and time post-liquid dairy manure: Effects on runoff, sediment and nutrients losses," Agricultural Water Management, Elsevier, vol. 184(C), pages 96-103.
    3. Gregory F. McIsaac & Mark B. David & George Z. Gertner & Donald A. Goolsby, 2001. "Nitrate flux in the Mississippi River," Nature, Nature, vol. 414(6860), pages 166-167, November.
    4. Jia, Haiyan & Lei, Alin & Lei, Junshan & Ye, Min & Zhao, Jingzhu, 2007. "Effects of hydrological processes on nitrogen loss in purple soil," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 89-97, April.
    5. Lourenzi, Cledimar Rogério & Ceretta, Carlos Alberto & Ciancio, Nathalia Haydee Riveros & Tiecher, Tadeu Luis & da Silva, Lincon Oliveira Stefanello & De Conti, Lessandro & Girotto, Eduardo & Ferreira, 2021. "Forms of nitrogen and phosphorus transfer by runoff in soil under no-tillage with successive organic waste and mineral fertilizers applications," Agricultural Water Management, Elsevier, vol. 248(C).
    6. Tomer, M.D. & Moorman, T.B. & Kovar, J.L. & Cole, K.J. & Nichols, D.J., 2016. "Eleven years of runoff and phosphorus losses from two fields with and without manure application, Iowa, USA," Agricultural Water Management, Elsevier, vol. 168(C), pages 104-111.
    7. Zanon, Jair Augusto & Favaretto, Nerilde & Democh Goularte, Gabriel & Dieckow, Jeferson & Barth, Gabriel, 2020. "Manure application at long-term in no-till: Effects on runoff, sediment and nutrients losses in high rainfall events," Agricultural Water Management, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edward Osei & Syed H. Jafri & Philip W. Gassman & Ali Saleh & Oscar Gallego, 2023. "Climate Change Impacts on Surface Runoff and Nutrient and Sediment Losses in Buchanan County, Iowa," Agriculture, MDPI, vol. 13(2), pages 1-21, February.
    2. Zhang, Binbin & Yan, Sihui & Li, Bin & Wu, Shufang & Feng, Hao & Gao, Xiaodong & Song, Xiaolin & Siddique, Kadambot H.M., 2023. "Combining organic and chemical fertilizer plus water-saving system reduces environmental impacts and improves apple yield in rainfed apple orchards," Agricultural Water Management, Elsevier, vol. 288(C).
    3. Renfang Chang & Yunqi Wang & Huifang Liu & Zhen Wang & Lei Ma & Jiancong Zhang & Junjie Li & Zhiyi Yan & Yihui Zhang & Danqing Li, 2024. "Optimizing Non-Point Source Pollution Management: Evaluating Cost-Effective Strategies in a Small Watershed within the Three Gorges Reservoir Area, China," Land, MDPI, vol. 13(6), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lourenzi, Cledimar Rogério & Ceretta, Carlos Alberto & Ciancio, Nathalia Haydee Riveros & Tiecher, Tadeu Luis & da Silva, Lincon Oliveira Stefanello & De Conti, Lessandro & Girotto, Eduardo & Ferreira, 2021. "Forms of nitrogen and phosphorus transfer by runoff in soil under no-tillage with successive organic waste and mineral fertilizers applications," Agricultural Water Management, Elsevier, vol. 248(C).
    2. Zanon, Jair Augusto & Favaretto, Nerilde & Democh Goularte, Gabriel & Dieckow, Jeferson & Barth, Gabriel, 2020. "Manure application at long-term in no-till: Effects on runoff, sediment and nutrients losses in high rainfall events," Agricultural Water Management, Elsevier, vol. 228(C).
    3. Martínez, Gonzalo & Laguna, Ana M. & Giráldez, Juan Vicente & Vanderlinden, Karl, 2021. "Concurrent variability of soil moisture and apparent electrical conductivity in the proximity of olive trees," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Castillo, Marco & Petrie, Ragan & Torero, Maximo & Vesterlund, Lise, 2013. "Gender differences in bargaining outcomes: A field experiment on discrimination," Journal of Public Economics, Elsevier, vol. 99(C), pages 35-48.
    5. Yuxin Cen & Bin Zhang & Jun Luo & Qingchun Deng & Hui Liu & Lei Wang, 2022. "Influence of Topographic Factors on the Characteristics of Gully Systems in Mountainous Areas of Ningnan Dry-Hot Valley, SW China," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    6. Elliot Anderson & Keith Schilling & Christopher Jones & Larry Weber & Calvin Wolter, 2024. "Iowa’s Annual Phosphorus Budget: Quantifying the Inputs and Outputs of Phosphorus Transport Processes," Land, MDPI, vol. 13(9), pages 1-17, September.
    7. Yang, Jia & Ren, Wei & Ouyang, Ying & Feng, Gary & Tao, Bo & Granger, Joshua J. & Poudel, Krishna P., 2019. "Projection of 21st century irrigation water requirement across the Lower Mississippi Alluvial Valley," Agricultural Water Management, Elsevier, vol. 217(C), pages 60-72.
    8. Qiuping Huang & Jiejun Huang & Xining Yang & Lemeng Ren & Cong Tang & Lixue Zhao, 2017. "Evaluating the Scale Effect of Soil Erosion Using Landscape Pattern Metrics and Information Entropy: A Case Study in the Danjiangkou Reservoir Area, China," Sustainability, MDPI, vol. 9(7), pages 1-15, July.
    9. Cherobim, Verediana Fernanda & Favaretto, Nerilde & de Freitas Melo, Vander & Barth, Gabriel & Huang, Chi-Hua, 2018. "Soil surface sealing by liquid dairy manure affects saturated hydraulic conductivity of Brazilian Oxisols," Agricultural Water Management, Elsevier, vol. 203(C), pages 193-196.
    10. Cherobim, Verediana Fernanda & Favaretto, Nerilde & Melo, Vander de Freitas & Rumbelsperger, Anelize Manuela Bahniuk & Huang, Chi-Hua, 2019. "Soil surface sealing by liquid dairy manure as analysed by X-ray computed tomography," Agricultural Water Management, Elsevier, vol. 213(C), pages 742-748.
    11. Kumari, V. Visha & Balloli, S.S. & Kumar, Manoranjan & Ramana, D.B.V. & Prabhakar, M. & Osman, M. & Indoria, A.K. & Manjunath, M. & Maruthi, V. & Chary, G. Ravindra & Chandran, M.A. Sarath & Gopinath,, 2024. "Diversified cropping systems for reducing soil erosion and nutrient loss and for increasing crop productivity and profitability in rainfed environments," Agricultural Systems, Elsevier, vol. 217(C).
    12. Truman, C.C. & Potter, T.L. & Nuti, R.C. & Franklin, D.H. & Bosch, D.D., 2011. "Antecedent water content effects on runoff and sediment yields from two Coastal Plain Ultisols," Agricultural Water Management, Elsevier, vol. 98(8), pages 1189-1196, May.
    13. Hoekstra, Arjen, 2010. "The relation between international trade and freshwater scarcity," WTO Staff Working Papers ERSD-2010-05, World Trade Organization (WTO), Economic Research and Statistics Division.
    14. Zhao, Xiaole & Mak-Mensah, Erastus & Zhao, Wucheng & Wang, Qi & Zhou, Xujiao & Zhang, Dengkui & Zhu, Jinhui & Qi, Wenjia & Liu, Qinglin & Li, Xiaoling & Li, Xuchun & Liu, Bing, 2024. "Optimized ridge-furrow technology with biochar amendment for alfalfa yield enhancement and soil erosion reduction based on a structural equation model on sloping land," Agricultural Water Management, Elsevier, vol. 298(C).
    15. Taoyan Dai & Liquan Wang & Tienan Li & Pengpeng Qiu & Jun Wang, 2022. "Study on the Characteristics of Soil Erosion in the Black Soil Area of Northeast China under Natural Rainfall Conditions: The Case of Sunjiagou Small Watershed," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    16. Juan An & Fenli Zheng & Mathias Römkens & Guifang Li & Qingsen Yang & Leilei Wen & Bin Wang, 2013. "The role of soil surface water regimes and raindrop impact on hillslope soil erosion and nutrient losses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 411-430, June.
    17. Matthew Heron Wilson & Sarah Taylor Lovell, 2016. "Agroforestry—The Next Step in Sustainable and Resilient Agriculture," Sustainability, MDPI, vol. 8(6), pages 1-15, June.
    18. Keith E. Schilling & Jerry Mount & Kelly M. Suttles & Eileen L. McLellan & Phillip W. Gassman & Michael J. White & Jeffrey G. Arnold, 2023. "An Approach for Prioritizing Natural Infrastructure Practices to Mitigate Flood and Nitrate Risks in the Mississippi-Atchafalaya River Basin," Land, MDPI, vol. 12(2), pages 1-24, January.
    19. Juan An & Jibiao Geng & Huiling Yang & Hongli Song & Bin Wang, 2021. "Effect of Ridge Height, Row Grade, and Field Slope on Nutrient Losses in Runoff in Contour Ridge Systems under Seepage with Rainfall Condition," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    20. Zhang, Qingwen & Liu, Dinghui & Cheng, Shanghong & Huang, Xinjun, 2016. "Combined effects of runoff and soil erodibility on available nitrogen losses from sloping farmland affected by agricultural practices," Agricultural Water Management, Elsevier, vol. 176(C), pages 1-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:273:y:2022:i:c:s0378377422004632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.