IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v217y2019icp60-72.html
   My bibliography  Save this article

Projection of 21st century irrigation water requirement across the Lower Mississippi Alluvial Valley

Author

Listed:
  • Yang, Jia
  • Ren, Wei
  • Ouyang, Ying
  • Feng, Gary
  • Tao, Bo
  • Granger, Joshua J.
  • Poudel, Krishna P.

Abstract

Lower Mississippi Alluvial Valley (LMAV) is the largest floodplain and one of the most productive agricultural regions in the United States. Irrigation is widely used in this region to improve crop production and resource use efficiency due to a mismatch between crop water requirements and precipitation timing and quantity during the growing season. In the recent decades, aquifer decline caused by groundwater withdrawals for irrigation has been recognized as a critical environmental issue threatening water security and agricultural sustainability in the LMAV. To improve agricultural water use efficiency and reduce groundwater withdrawals, it is pivotal to understand the spatiotemporal patterns of crop irrigation water requirements (IWR). In this study, we analyzed future climate changes over the LMAV cropland areas and estimated future IWR changes for major crops in the 21st century using two climate scenarios (i.e. RCP45 and RCP85) and two crop growth duration length (GDL) scenarios [i.e. Fixed GDL (GDL does not change with time) and Varied GDL (GDL changes with time)]. Results show that croplands in the LMAV would experience continuous warming, and either no significant change or a decreasing level of precipitation under the RCP45 and the RCP85. If keeping current cropland areas and cropping systems unchanged, average crop IWR by the end of the 21st century would increase by 4.2% under the RCP45 + Varied GDL scenario, 14.5% under the RCP45 + Fixed GDL scenario, 9.2% under the RCP85 + Varied GDL scenario, and 29.4% under the RCP85 + Fixed GDL scenario. The greatest increases would occur in the summer months. Aquifer levels in the LMAV, therefore, are expected to decline at an accelerated pace if no effective mitigation strategies are implemented. This study made the first attempt to reveal the spatially-explicit crop IWR and its future changes in the LMAV, which provides a scientific basis for developing management strategies that can enhance water use efficiency and improve agriculture sustainability.

Suggested Citation

  • Yang, Jia & Ren, Wei & Ouyang, Ying & Feng, Gary & Tao, Bo & Granger, Joshua J. & Poudel, Krishna P., 2019. "Projection of 21st century irrigation water requirement across the Lower Mississippi Alluvial Valley," Agricultural Water Management, Elsevier, vol. 217(C), pages 60-72.
  • Handle: RePEc:eee:agiwat:v:217:y:2019:i:c:p:60-72
    DOI: 10.1016/j.agwat.2019.02.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418318249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.02.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tom Gleeson & Yoshihide Wada & Marc F. P. Bierkens & Ludovicus P. H. van Beek, 2012. "Water balance of global aquifers revealed by groundwater footprint," Nature, Nature, vol. 488(7410), pages 197-200, August.
    2. Belder, P. & Bouman, B. A. M. & Cabangon, R. & Guoan, Lu & Quilang, E. J. P. & Yuanhua, Li & Spiertz, J. H. J. & Tuong, T. P., 2004. "Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia," Agricultural Water Management, Elsevier, vol. 65(3), pages 193-210, March.
    3. Gregory F. McIsaac & Mark B. David & George Z. Gertner & Donald A. Goolsby, 2001. "Nitrate flux in the Mississippi River," Nature, Nature, vol. 414(6860), pages 166-167, November.
    4. Bouman, B. A. M. & Tuong, T. P., 2001. "Field water management to save water and increase its productivity in irrigated lowland rice," Agricultural Water Management, Elsevier, vol. 49(1), pages 11-30, July.
    5. Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.
    6. Xu, Hanqing & Tian, Zhan & He, Xiaogang & Wang, Jun & Sun, Laixiang & Fischer, Günther & Fan, Dongli & Zhong, Honglin & Wu, Wei & Pope, Edward & Kent, Chris & Liu, Junguo, 2019. "Future increases in irrigation water requirement challenge the water-food nexus in the northeast farming region of China," Agricultural Water Management, Elsevier, vol. 213(C), pages 594-604.
    7. Stehfest, Elke & Heistermann, Maik & Priess, Joerg A. & Ojima, Dennis S. & Alcamo, Joseph, 2007. "Simulation of global crop production with the ecosystem model DayCent," Ecological Modelling, Elsevier, vol. 209(2), pages 203-219.
    8. Jenkins, W. Aaron & Murray, Brian C. & Kramer, Randall A. & Faulkner, Stephen P., 2010. "Valuing ecosystem services from wetlands restoration in the Mississippi Alluvial Valley," Ecological Economics, Elsevier, vol. 69(5), pages 1051-1061, March.
    9. Yau, Sui-Kwong & Nimah, Musa & Farran, Mohamad, 2011. "Early sowing and irrigation to increase barley yields and water use efficiency in Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 98(12), pages 1776-1781, October.
    10. Carvajal, F. & Agüera, F. & Sánchez-Hermosilla, J., 2014. "Water balance in artificial on-farm agricultural water reservoirs for the irrigation of intensive greenhouse crops," Agricultural Water Management, Elsevier, vol. 131(C), pages 146-155.
    11. Bouman, B.A.M. & Peng, S. & Castaneda, A.R. & Visperas, R.M., 2005. "Yield and water use of irrigated tropical aerobic rice systems," Agricultural Water Management, Elsevier, vol. 74(2), pages 87-105, June.
    12. Ying Ouyang & Gary Feng & Theodor D. Leininger & John Read & Johnie N. Jenkins, 2018. "Pond and Irrigation Model (PIM): a Tool for Simultaneously Evaluating Pond Water Availability and Crop Irrigation Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 2969-2983, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zhi & Fang, Gonghuan & Chen, Yaning & Duan, Weili & Mukanov, Yerbolat, 2020. "Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming," Agricultural Water Management, Elsevier, vol. 231(C).
    2. Lei Liu & Jianqin Ma & Xiuping Hao & Qingyun Li, 2019. "Limitations of Water Resources to Crop Water Requirement in the Irrigation Districts along the Lower Reach of the Yellow River in China," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    3. Kun Jia & Wei Zhang & Bingyan Xie & Xitong Xue & Feng Zhang & Dongrui Han, 2022. "Does Climate Change Increase Crop Water Requirements of Winter Wheat and Summer Maize in the Lower Reaches of the Yellow River Basin?," IJERPH, MDPI, vol. 19(24), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, S.M. Mofijul & Gaihre, Yam Kanta & Biswas, Jatish Chandra & Jahan, Md. Sarwar & Singh, Upendra & Adhikary, Sanjoy Kumar & Satter, M. Abdus & Saleque, M.A., 2018. "Different nitrogen rates and methods of application for dry season rice cultivation with alternate wetting and drying irrigation: Fate of nitrogen and grain yield," Agricultural Water Management, Elsevier, vol. 196(C), pages 144-153.
    2. Luo, Wanqi & Chen, Mengting & Kang, Yinhong & Li, Wenping & Li, Dan & Cui, Yuanlai & Khan, Shahbaz & Luo, Yufeng, 2022. "Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall," Agricultural Water Management, Elsevier, vol. 260(C).
    3. Belder, P. & Bouman, B. A.M. & Spiertz, J.H.J., 2007. "Exploring options for water savings in lowland rice using a modelling approach," Agricultural Systems, Elsevier, vol. 92(1-3), pages 91-114, January.
    4. Ian A. Navarrete & Victor B. Asio, 2014. "Research productivity in soil science in the Philippines," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 261-272, July.
    5. Bueno, C.S. & Bucourt, M. & Kobayashi, N. & Inubushi, K. & Lafarge, T., 2010. "Water productivity of contrasting rice genotypes grown under water-saving conditions in the tropics and investigation of morphological traits for adaptation," Agricultural Water Management, Elsevier, vol. 98(2), pages 241-250, December.
    6. Willy Franz Gouertoumbo & Yousef Alhaj Hamoud & Xiangping Guo & Hiba Shaghaleh & Amar Ali Adam Hamad & Elsayed Elsadek, 2022. "Wheat Straw Burial Enhances the Root Physiology, Productivity, and Water Utilization Efficiency of Rice under Alternative Wetting and Drying Irrigation," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    7. Ishfaq, Muhammad & Farooq, Muhammad & Zulfiqar, Usman & Hussain, Saddam & Akbar, Nadeem & Nawaz, Ahmad & Anjum, Shakeel Ahmad, 2020. "Alternate wetting and drying: A water-saving and ecofriendly rice production system," Agricultural Water Management, Elsevier, vol. 241(C).
    8. Feng, Liping & Bouman, B. A.M. & Tuong, T.P. & Cabangon, R.J. & Li, Yalong & Lu, Guoan & Feng, Yuehua, 2007. "Exploring options to grow rice using less water in northern China using a modelling approach: I. Field experiments and model evaluation," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 1-13, March.
    9. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    10. Yufeng Luo & Haolong Fu & Seydou Traore, 2014. "Biodiversity Conservation in Rice Paddies in China: Toward Ecological Sustainability," Sustainability, MDPI, vol. 6(9), pages 1-18, September.
    11. Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
    12. Alhaj Hamoud, Yousef & Guo, Xiangping & Wang, Zhenchang & Shaghaleh, Hiba & Chen, Sheng & Hassan, Alfadil & Bakour, Ahmad, 2019. "Effects of irrigation regime and soil clay content and their interaction on the biological yield, nitrogen uptake and nitrogen-use efficiency of rice grown in southern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 934-946.
    13. Liang, Kaiming & Zhong, Xuhua & Huang, Nongrong & Lampayan, Rubenito M. & Pan, Junfeng & Tian, Ka & Liu, Yanzhuo, 2016. "Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China," Agricultural Water Management, Elsevier, vol. 163(C), pages 319-331.
    14. Patel, D.P. & Das, Anup & Munda, G.C. & Ghosh, P.K. & Bordoloi, Juri Sandhya & Kumar, Manoj, 2010. "Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem," Agricultural Water Management, Elsevier, vol. 97(9), pages 1269-1276, September.
    15. Dasgupta, Pragna & Das, Bhabani S. & Sen, Soumitra K., 2015. "Soil water potential and recoverable water stress in drought tolerant and susceptible rice varieties," Agricultural Water Management, Elsevier, vol. 152(C), pages 110-118.
    16. Hochman, Zvi & Horan, Heidi & Reddy, D. Raji & Sreenivas, Gade & Tallapragada, Chiranjeevi & Adusumilli, Ravindra & Gaydon, Don & Singh, Kamalesh K. & Roth, Christian H., 2017. "Smallholder farmers managing climate risk in India: 1. Adapting to a variable climate," Agricultural Systems, Elsevier, vol. 150(C), pages 54-66.
    17. Zheng, Junlin & Chen, Taotao & Wu, Qi & Yu, Jianming & Chen, Wei & Chen, Yinglong & Siddique, Kadambot H.M. & Meng, Weizhong & Chi, Daocai & Xia, Guimin, 2018. "Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress," Agricultural Water Management, Elsevier, vol. 206(C), pages 241-251.
    18. Chapagain, A.K. & Hoekstra, A.Y., 2011. "The blue, green and grey water footprint of rice from production and consumption perspectives," Ecological Economics, Elsevier, vol. 70(4), pages 749-758, February.
    19. Bouman, B.A.M. & Peng, S. & Castaneda, A.R. & Visperas, R.M., 2005. "Yield and water use of irrigated tropical aerobic rice systems," Agricultural Water Management, Elsevier, vol. 74(2), pages 87-105, June.
    20. Hafeez, M.M. & Bouman, B.A.M. & Van de Giesen, N. & Vlek, P., 2007. "Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 81-89, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:217:y:2019:i:c:p:60-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.