IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v67y2013i2p411-430.html
   My bibliography  Save this article

The role of soil surface water regimes and raindrop impact on hillslope soil erosion and nutrient losses

Author

Listed:
  • Juan An
  • Fenli Zheng
  • Mathias Römkens
  • Guifang Li
  • Qingsen Yang
  • Leilei Wen
  • Bin Wang

Abstract

Few investigations have addressed the interaction between soil surface water regimes and raindrop impact on nutrient losses, especially under artesian seepage condition. A simulation study was conducted to examine the effects on nitrogen and phosphorus losses. Four soil surface water regimes were designed: free drainage, saturation with rainfall, artesian seepage without rainfall, and artesian seepage with rainfall. These water regimes were subjected to two surface treatments: with and without raindrop impact through placing nylon net over soil pan. The results showed saturation and seepage with rainfall conditions induced greater soil loss and nutrient losses than free drainage condition. Nutrient concentrations in runoff from artesian seepage without rainfall condition were 7.3–228.7 times those from free drainage condition. Nutrient losses by runoff from saturation and seepage with rainfall conditions increased by factors of 1.30–9.38 and 2.81–40.11 times, and the corresponding losses with eroded sediment by 1.37–7.67 and 1.75–9.0 times, respectively, relative to those from free drainage condition. Regardless of different soil surface water regimes, raindrop impact increased 20.90–94.0 % nutrient losses with eroded sediment by promoting soil loss, but it only significantly enhanced nutrient transport to runoff under free drainage condition. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Juan An & Fenli Zheng & Mathias Römkens & Guifang Li & Qingsen Yang & Leilei Wen & Bin Wang, 2013. "The role of soil surface water regimes and raindrop impact on hillslope soil erosion and nutrient losses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 411-430, June.
  • Handle: RePEc:spr:nathaz:v:67:y:2013:i:2:p:411-430
    DOI: 10.1007/s11069-013-0570-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0570-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0570-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jia, Haiyan & Lei, Alin & Lei, Junshan & Ye, Min & Zhao, Jingzhu, 2007. "Effects of hydrological processes on nitrogen loss in purple soil," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 89-97, April.
    2. Vassilios Tsihrintzis & Rizwan Hamid, 1997. "Modeling and Management of Urban Stormwater Runoff Quality: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 11(2), pages 136-164, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan An & Jibiao Geng & Huiling Yang & Hongli Song & Bin Wang, 2021. "Effect of Ridge Height, Row Grade, and Field Slope on Nutrient Losses in Runoff in Contour Ridge Systems under Seepage with Rainfall Condition," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    2. Leilei Wen & Fenli Zheng & Haiou Shen & Feng Bian & Yiliang Jiang, 2015. "Rainfall intensity and inflow rate effects on hillslope soil erosion in the Mollisol region of Northeast China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 381-395, October.
    3. Chandra Setyawan & Chin-Yu Lee & Miky Prawitasari, 2019. "Investigating spatial contribution of land use types and land slope classes on soil erosion distribution under tropical environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 697-718, September.
    4. Wang, Jilei & Shi, Xiangxue & Li, Zizhong & Zhang, Yan & Liu, Yanqing & Peng, Yuxing, 2021. "Responses of runoff and soil erosion to planting pattern, row direction, and straw mulching on sloped farmland in the corn belt of northeast China," Agricultural Water Management, Elsevier, vol. 253(C).
    5. Jie Wei & Lin Hou & Xiubin He, 2014. "An assessment of human versus climatic impacts on large-sized basin erosion: the case of the upper Yangtze River," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 405-420, November.
    6. Ou, Yang & Rousseau, Alain N. & Yan, Baixing & Wang, Lixia & Zhang, Yu, 2021. "Grass barriers for mitigating diffuse pollution within a source water area - A case study of Northeast China," Agricultural Water Management, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castillo, Marco & Petrie, Ragan & Torero, Maximo & Vesterlund, Lise, 2013. "Gender differences in bargaining outcomes: A field experiment on discrimination," Journal of Public Economics, Elsevier, vol. 99(C), pages 35-48.
    2. Vassilios A. Tsihrintzis, 2017. "The use of Vertical Flow Constructed Wetlands in Wastewater Treatment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3245-3270, August.
    3. Azam Haidary & Bahman Amiri & Jan Adamowski & Nicola Fohrer & Kaneyuki Nakane, 2013. "Assessing the Impacts of Four Land Use Types on the Water Quality of Wetlands in Japan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2217-2229, May.
    4. Vassilios Tsihrintzis & Hector Fuentes & Rao Gadipudi, 1997. "GIS-Aided Modeling of Nonpoint Source Pollution Impacts on Surface and Ground Waters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 11(3), pages 207-218, June.
    5. An Liu & Dunzhu Li & Liang Liu & Yuntao Guan, 2014. "Understanding the Role of Urban Road Surface Characteristics in influencing Stormwater Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5217-5229, November.
    6. V. M. Jayasooriya & A. W. M. Ng & S. Muthukumaran & B. J. C. Perera, 2016. "Optimal Sizing of Green Infrastructure Treatment Trains for Stormwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5407-5420, November.
    7. Fei Li & Xu-Feng Yan & Huan-Feng Duan, 2019. "Sustainable Design of Urban Stormwater Drainage Systems by Implementing Detention Tank and LID Measures for Flooding Risk Control and Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3271-3288, July.
    8. Mariana Marchioni & Roberto Fedele & Anita Raimondi & John Sansalone & Gianfranco Becciu, 2022. "Permeable Asphalt Hydraulic Conductivity and Particulate Matter Separation With XRT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1879-1895, April.
    9. Barah, Masoud & Khojandi, Anahita & Li, Xueping & Hathaway, Jon & Omitaomu, OluFemi, 2021. "Optimizing green infrastructure placement under precipitation uncertainty," Omega, Elsevier, vol. 100(C).
    10. Wang, Tian & Xiao, Wenfa & Huang, Zhilin & Zeng, Lixiong, 2022. "Interflow pattern govern nitrogen loss from tea orchard slopes in response to rainfall pattern in Three Gorges Reservoir Area," Agricultural Water Management, Elsevier, vol. 269(C).
    11. Li, Tianyang & Zhang, Yi & He, Binghui & Wu, Xiaoyu & Du, Yingni, 2022. "Nitrate loss by runoff in response to rainfall amount category and different combinations of fertilization and cultivation in sloping croplands," Agricultural Water Management, Elsevier, vol. 273(C).
    12. Satyavati Shukla & Shirishkumar Gedam & M. V. Khire, 2020. "Implications of demographic changes and land transformations on surface water quality of rural and urban subbasins of Upper Bhima River basin, Maharashtra, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 129-171, January.
    13. J. Hathaway & W. Hunt & D. McCarthy, 2015. "Variability of Intra-event Statistics for Multiple Fecal Indicator Bacteria in Urban Stormwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3635-3649, August.
    14. Sang-Soo Han & Zhi Chen & Fa-Yi Zhou & Xiu-Qing Lu, 2014. "Assessment of Suspended Solid Removal in a Surface Flow Constructed Wetland Using a Three-Dimensional Numerical Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3111-3125, August.
    15. S. Tang & W. Luo & Z. Jia & W. Liu & S. Li & Y. Wu, 2016. "Evaluating Retention Capacity of Infiltration Rain Gardens and Their Potential Effect on Urban Stormwater Management in the Sub-Humid Loess Region of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 983-1000, February.
    16. Alexandros I. Stefanakis, 2019. "The Role of Constructed Wetlands as Green Infrastructure for Sustainable Urban Water Management," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    17. Zachary Christman & Mahbubur Meenar & Lynn Mandarano & Kyle Hearing, 2018. "Prioritizing Suitable Locations for Green Stormwater Infrastructure Based on Social Factors in Philadelphia," Land, MDPI, vol. 7(4), pages 1-17, November.
    18. Elisa Palazzo & Sisi Wang, 2022. "Landscape Design for Flood Adaptation from 20 Years of Constructed Ecologies in China," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    19. Jun Wang & Yiping Guo, 2020. "Proper Sizing of Infiltration Trenches Using Closed-Form Analytical Equations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(12), pages 3809-3821, September.
    20. Xiang Chen & Weiqi Zhou & Steward T. A. Pickett & Weifeng Li & Lijian Han, 2016. "Spatial-Temporal Variations of Water Quality and Its Relationship to Land Use and Land Cover in Beijing, China," IJERPH, MDPI, vol. 13(5), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:67:y:2013:i:2:p:411-430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.