IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i6p574-d72301.html
   My bibliography  Save this article

Agroforestry—The Next Step in Sustainable and Resilient Agriculture

Author

Listed:
  • Matthew Heron Wilson

    (1105 Plant Sciences Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA)

  • Sarah Taylor Lovell

    (1009 Plant Sciences Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA)

Abstract

Agriculture faces the unprecedented task of feeding a world population of 9 billion people by 2050 while simultaneously avoiding harmful environmental and social effects. One effort to meet this challenge has been organic farming, with outcomes that are generally positive. However, a number of challenges remain. Organic yields lag behind those in conventional agriculture, and greenhouse gas emissions and nutrient leaching remain somewhat problematic. In this paper, we examine current organic and conventional agriculture systems and suggest that agroforestry, which is the intentional combination of trees and shrubs with crops or livestock, could be the next step in sustainable agriculture. By implementing systems that mimic nature’s functions, agroforestry has the potential to remain productive while supporting a range of ecosystem services. In this paper, we outline the common practices and products of agroforestry as well as beneficial environmental and social effects. We address barriers to agroforestry and explore potential options to alter policies and increase adoption by farmers. We conclude that agroforestry is one of the best land use strategies to contribute to food security while simultaneously limiting environmental degradation.

Suggested Citation

  • Matthew Heron Wilson & Sarah Taylor Lovell, 2016. "Agroforestry—The Next Step in Sustainable and Resilient Agriculture," Sustainability, MDPI, vol. 8(6), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:6:p:574-:d:72301
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/6/574/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/6/574/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dana Cordell & Stuart White, 2011. "Peak Phosphorus: Clarifying the Key Issues of a Vigorous Debate about Long-Term Phosphorus Security," Sustainability, MDPI, vol. 3(10), pages 1-23, October.
    2. Lovell, Sarah Taylor & DeSantis, S'ra & Nathan, Chloe A. & Olson, Meryl Breton & Ernesto Méndez, V. & Kominami, Hisashi C. & Erickson, Daniel L. & Morris, Katlyn S. & Morris, William B., 2010. "Integrating agroecology and landscape multifunctionality in Vermont: An evolving framework to evaluate the design of agroecosystems," Agricultural Systems, Elsevier, vol. 103(5), pages 327-341, June.
    3. Anthony Trewavas, 2001. "Urban myths of organic farming," Nature, Nature, vol. 410(6827), pages 409-410, March.
    4. Gregory F. McIsaac & Mark B. David & George Z. Gertner & Donald A. Goolsby, 2001. "Nitrate flux in the Mississippi River," Nature, Nature, vol. 414(6860), pages 166-167, November.
    5. Zheng, Xiao & Zhu, Jiaojun & Xing, Zefeng, 2016. "Assessment of the effects of shelterbelts on crop yields at the regional scale in Northeast China," Agricultural Systems, Elsevier, vol. 143(C), pages 49-60.
    6. Hertel, Thomas W., 2015. "The Challenges of Sustainably Feeding a Growing Planet," 2015 Conference (59th), February 10-13, 2015, Rotorua, New Zealand 202525, Australian Agricultural and Resource Economics Society.
    7. Emile A. Frison & Jeremy Cherfas & Toby Hodgkin, 2011. "Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security," Sustainability, MDPI, vol. 3(1), pages 1-16, January.
    8. Corinne Valdivia & Carla Barbieri & Michael A. Gold, 2012. "Between Forestry and Farming: Policy and Environmental Implications of the Barriers to Agroforestry Adoption," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 60(2), pages 155-175, June.
    9. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    10. Dimitri, Carolyn, 2010. "Organic Agriculture: An Agrarian or Industrial Revolution?," Agricultural and Resource Economics Review, Cambridge University Press, vol. 39(3), pages 384-395, October.
    11. Hanley, Nick & Breeze, Tom D. & Ellis, Ciaran & Goulson, David, 2015. "Measuring the economic value of pollination services: Principles, evidence and knowledge gaps," Ecosystem Services, Elsevier, vol. 14(C), pages 124-132.
    12. Louis Verchot & Meine Noordwijk & Serigne Kandji & Tom Tomich & Chin Ong & Alain Albrecht & Jens Mackensen & Cynthia Bantilan & K. Anupama & Cheryl Palm, 2007. "Climate change: linking adaptation and mitigation through agroforestry," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(5), pages 901-918, June.
    13. James Elser & Elena Bennett, 2011. "A broken biogeochemical cycle," Nature, Nature, vol. 478(7367), pages 29-31, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radka Redlichová & Gabriela Chmelíková & Ivana Blažková & Eliška Svobodová & Inez Naaki Vanderpuje, 2021. "Organic Food Needs More Land and Direct Energy to Be Produced Compared to Food from Conventional Farming: Empirical Evidence from the Czech Republic," Agriculture, MDPI, vol. 11(9), pages 1-19, August.
    2. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    3. Bourceret, Amélie & Accatino, Francesco & Robert, Corinne, 2024. "A modeling framework of a territorial socio-ecosystem to study the trajectories of change in agricultural phytosanitary practices," Ecological Modelling, Elsevier, vol. 494(C).
    4. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    5. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    6. Patrick M. Carr & Greta G. Gramig & Mark A. Liebig, 2013. "Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality," Sustainability, MDPI, vol. 5(7), pages 1-30, July.
    7. Marney E. Isaac & S. Ryan Isakson & Bryan Dale & Charles Z. Levkoe & Sarah K. Hargreaves & V. Ernesto Méndez & Hannah Wittman & Colleen Hammelman & Jennifer C. Langill & Adam R. Martin & Erin Nelson &, 2018. "Agroecology in Canada: Towards an Integration of Agroecological Practice, Movement, and Science," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    8. Chowdhury, Rubel Biswas & Moore, Graham A. & Weatherley, Anthony J. & Arora, Meenakshi, 2014. "A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 213-228.
    9. Zahra Didarali & James Gambiza, 2019. "Permaculture: Challenges and Benefits in Improving Rural Livelihoods in South Africa and Zimbabwe," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    10. José Luis Aleixandre & José Luis Aleixandre-Tudó & Máxima Bolaños-Pizarro & Rafael Aleixandre-Benavent, 2015. "Mapping the scientific research in organic farming: a bibliometric review," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 295-309, October.
    11. Zagata, Lukas & Uhnak, Tomas & Hrabák, Jiří, 2021. "Moderately radical? Stakeholders' perspectives on societal roles and transformative potential of organic agriculture," Ecological Economics, Elsevier, vol. 190(C).
    12. Natalia Brzezina & Katharina Biely & Ariella Helfgott & Birgit Kopainsky & Joost Vervoort & Erik Mathijs, 2017. "Development of Organic Farming in Europe at the Crossroads: Looking for the Way Forward through System Archetypes Lenses," Sustainability, MDPI, vol. 9(5), pages 1-23, May.
    13. Jouzi, Zeynab & Azadi, Hossein & Taheri, Fatemeh & Zarafshani, Kiumars & Gebrehiwot, Kindeya & Van Passel, Steven & Lebailly, Philippe, 2017. "Organic Farming and Small-Scale Farmers: Main Opportunities and Challenges," Ecological Economics, Elsevier, vol. 132(C), pages 144-154.
    14. Beata Feledyn-Szewczyk & Krzysztof Jończyk & Jarosław Stalenga, 2024. "The Effect of Crop Production Systems and Cultivars on Spring Wheat ( Triticum aestivum L.) Yield in a Long-Term Experiment," Agriculture, MDPI, vol. 14(4), pages 1-16, April.
    15. Andrea E. Ulrich & Ewald Schnug, 2013. "The Modern Phosphorus Sustainability Movement: A Profiling Experiment," Sustainability, MDPI, vol. 5(11), pages 1-23, October.
    16. Fatemeh Taheri & Hossein Azadi & Marijke D’Haese, 2017. "A World without Hunger: Organic or GM Crops?," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    17. Walan, Petter & Davidsson, Simon & Johansson, Sheshti & Höök, Mikael, 2014. "Phosphate rock production and depletion: Regional disaggregated modeling and global implications," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 178-187.
    18. Fábio T. F. Silva & Alexandre Szklo & Amanda Vinhoza & Ana Célia Nogueira & André F. P. Lucena & Antônio Marcos Mendonça & Camilla Marcolino & Felipe Nunes & Francielle M. Carvalho & Isabela Tagomori , 2022. "Inter-sectoral prioritization of climate technologies: insights from a Technology Needs Assessment for mitigation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-39, October.
    19. Ana Filipa Fonseca & Fabíola Polita & Lívia Madureira, 2024. "How Agroecological Transition Frameworks Are Reshaping Agroecology: A Review," Land, MDPI, vol. 13(11), pages 1-15, November.
    20. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:6:p:574-:d:72301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.