IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2011i8p1189-1196.html
   My bibliography  Save this article

Antecedent water content effects on runoff and sediment yields from two Coastal Plain Ultisols

Author

Listed:
  • Truman, C.C.
  • Potter, T.L.
  • Nuti, R.C.
  • Franklin, D.H.
  • Bosch, D.D.

Abstract

The highly weathered, low-carbon, intensively cropped, drought-prone Coastal Plain soils of Georgia are susceptible to runoff and soil loss, especially at certain times of the year when soil water contents are elevated. We quantified the effects of antecedent water content (AWC) on runoff (R) and sediment (E) losses from two loamy sands managed under conventional- (CT), strip- (ST), and/or no-till (NT) systems. Two AWC treatments were evaluated: field moist (FM) and pre-wet (PW), created with and without post pesticide application irrigations (~12 mm of water added with the rainfall simulated over 30 min) for incorporation. Treatments (5) evaluated were: CT + FM, CT + PW, ST + FM, ST + PW, and NT + PW. Field plots, each 2-m x -3 m, were established on each treatment. Each 6-m2 field plot received simulated rainfall at a variable rainfall intensity (Iv) pattern for 70 min (site 1) or a constant rainfall intensity (Ic) pattern for 60 min (site 2; Ic = 50.8 mm h-1). Adding ~12 mm of water as herbicide incorporation increased AWCs of the 0-2 (3-9-fold) and 2-15 (23-117%) cm soil depths of PW plots compared to existing field moist soil conditions. Increase in AWC increased R (as much as 60%) and maximum R rates (as much as 62%), and decreased E (at least 59%) and maximum E rates (as much as 2.1-fold) for corresponding tillage treatments. Compared to CT plots, ST and NT plots decreased R (at least 2.6-fold) and maximum R rates (as much as 3-fold), and decreased E (at least 2.7-fold) and maximum E rates (at least 3.2-fold). Runoff curves for pre-wetted CT and ST plots were always higher than corresponding FM curves, whereas E curves for field moist CT and ST plots were always higher than corresponding PW curves. Changes in AWC and tillage affected detachment and transport processes controlling runoff and sediment yields. A more accurate measure of rainfall partitioning and detachment and transport processes affecting R and E losses was obtained when commonly occurring field conditions (increased AWC with irrigation; Iv pattern derived from natural rainfall; commonly used tillage systems) were created and evaluated.

Suggested Citation

  • Truman, C.C. & Potter, T.L. & Nuti, R.C. & Franklin, D.H. & Bosch, D.D., 2011. "Antecedent water content effects on runoff and sediment yields from two Coastal Plain Ultisols," Agricultural Water Management, Elsevier, vol. 98(8), pages 1189-1196, May.
  • Handle: RePEc:eee:agiwat:v:98:y:2011:i:8:p:1189-1196
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411000515
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Linhong & Zhang, Bin & Wang, Mingzhu, 2007. "Effects of antecedent soil moisture on runoff and soil erosion in alley cropping systems," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 54-62, December.
    2. Lewan, Elisabet & Kreuger, Jenny & Jarvis, Nicholas, 2009. "Implications of precipitation patterns and antecedent soil water content for leaching of pesticides from arable land," Agricultural Water Management, Elsevier, vol. 96(11), pages 1633-1640, November.
    3. Truman, C.C. & Nuti, R.C., 2009. "Improved water capture and erosion reduction through furrow diking," Agricultural Water Management, Elsevier, vol. 96(7), pages 1071-1077, July.
    4. Truman, C.C. & Nuti, R.C., 2010. "Furrow diking in conservation tillage," Agricultural Water Management, Elsevier, vol. 97(6), pages 835-840, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunfeng Jia & Baoping Sun & Xinxiao Yu & Xiaohui Yang, 2020. "Analysis of Runoff and Sediment Losses from a Sloped Roadbed under Variable Rainfall Intensities and Vegetation Conditions," Sustainability, MDPI, vol. 12(5), pages 1-11, March.
    2. George Mitri & Georgy Nasrallah & Manal Nader, 2021. "Spatial distribution and landscape impact analysis of quarries and waste dumpsites," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12302-12325, August.
    3. Jenkins, M.B. & Truman, C.C. & Franklin, D.H. & Potter, T.L. & Bosch, D.D. & Strickland, T.C. & Nuti, R.C., 2014. "Fecal bacterial losses in runoff from conventional and no-till pearl millet fertilized with broiler litter," Agricultural Water Management, Elsevier, vol. 134(C), pages 38-41.
    4. Roua Amami & Khaled Ibrahimi & Farooq Sher & Paul Milham & Hiba Ghazouani & Sayed Chehaibi & Zahra Hussain & Hafiz M. N. Iqbal, 2021. "Impacts of Different Tillage Practices on Soil Water Infiltration for Sustainable Agriculture," Sustainability, MDPI, vol. 13(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Vejchar & Josef Vacek & David Hájek & Jiří Bradna & Pavel Kasal & Andrea Svobodová, 2019. "Reduction of surface runoff on sloped agricultural land in potato cultivation in de-stoned soil," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(3), pages 118-124.
    2. Martínez, Gonzalo & Laguna, Ana M. & Giráldez, Juan Vicente & Vanderlinden, Karl, 2021. "Concurrent variability of soil moisture and apparent electrical conductivity in the proximity of olive trees," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Yuxin Cen & Bin Zhang & Jun Luo & Qingchun Deng & Hui Liu & Lei Wang, 2022. "Influence of Topographic Factors on the Characteristics of Gully Systems in Mountainous Areas of Ningnan Dry-Hot Valley, SW China," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    4. Qiuping Huang & Jiejun Huang & Xining Yang & Lemeng Ren & Cong Tang & Lixue Zhao, 2017. "Evaluating the Scale Effect of Soil Erosion Using Landscape Pattern Metrics and Information Entropy: A Case Study in the Danjiangkou Reservoir Area, China," Sustainability, MDPI, vol. 9(7), pages 1-15, July.
    5. Malone, R.W. & Nolan, B.T. & Ma, L. & Kanwar, R.S. & Pederson, C. & Heilman, P., 2014. "Effects of tillage and application rate on atrazine transport to subsurface drainage: Evaluation of RZWQM using a six-year field study," Agricultural Water Management, Elsevier, vol. 132(C), pages 10-22.
    6. Nuti, R.C. & Lamb, M.C. & Sorensen, R.B. & Truman, C.C., 2009. "Agronomic and economic response to furrow diking tillage in irrigated and non-irrigated cotton (Gossypium hirsutum L.)," Agricultural Water Management, Elsevier, vol. 96(7), pages 1078-1084, July.
    7. Taoyan Dai & Liquan Wang & Tienan Li & Pengpeng Qiu & Jun Wang, 2022. "Study on the Characteristics of Soil Erosion in the Black Soil Area of Northeast China under Natural Rainfall Conditions: The Case of Sunjiagou Small Watershed," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    8. Jenkins, M.B. & Truman, C.C. & Franklin, D.H. & Potter, T.L. & Bosch, D.D. & Strickland, T.C. & Nuti, R.C., 2014. "Fecal bacterial losses in runoff from conventional and no-till pearl millet fertilized with broiler litter," Agricultural Water Management, Elsevier, vol. 134(C), pages 38-41.
    9. Goeringer, L. Paul & Goodwin, Harold L., Jr. & Dixon, Bruce L. & Popp, Michael P., 2013. "EnVesting in an Agricultural Legacy: Design and Implementation of a Targeted Young and Beginning Farmer Loan Program in Arkansas," 2013 Annual Meeting, February 2-5, 2013, Orlando, Florida 143037, Southern Agricultural Economics Association.
    10. Gordon, R.J. & VanderZaag, A.C. & Dekker, P.A. & De Haan, R. & Madani, A., 2011. "Impact of modified tillage on runoff and nutrient loads from potato fields in Prince Edward Island," Agricultural Water Management, Elsevier, vol. 98(12), pages 1782-1788, October.
    11. Florin Nenciu & Marius Remus Oprescu & Sorin-Stefan Biris, 2022. "Improve the Constructive Design of a Furrow Diking Rotor Aimed at Increasing Water Consumption Efficiency in Sunflower Farming Systems," Agriculture, MDPI, vol. 12(6), pages 1-22, June.
    12. Li, Tianyang & Zhang, Yi & He, Binghui & Wu, Xiaoyu & Du, Yingni, 2022. "Nitrate loss by runoff in response to rainfall amount category and different combinations of fertilization and cultivation in sloping croplands," Agricultural Water Management, Elsevier, vol. 273(C).
    13. Marius Remus Oprescu & Sorin-Stefan Biris & Florin Nenciu, 2023. "Novel Furrow Diking Equipment-Design Aimed at Increasing Water Consumption Efficiency in Vineyards," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    14. Silva, Luis L., 2017. "Are basin and reservoir tillage effective techniques to reduce runoff under sprinkler irrigation in Mediterranean conditions?," Agricultural Water Management, Elsevier, vol. 191(C), pages 50-56.
    15. Zhu, Pingzong & Zhang, Guanghui & Wang, Hongxiao & Zhang, Baojun & Liu, Yingna, 2021. "Soil moisture variations in response to precipitation properties and plant communities on steep gully slope on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 256(C).
    16. Truman, C.C. & Nuti, R.C., 2010. "Furrow diking in conservation tillage," Agricultural Water Management, Elsevier, vol. 97(6), pages 835-840, June.
    17. Cary, Michael A. & Frey, Gregory E., 2020. "Alley cropping as an alternative under changing climate and risk scenarios: A Monte-Carlo simulation approach," Agricultural Systems, Elsevier, vol. 185(C).
    18. Henine, Hocine & Jeantet, Alexis & Chaumont, Cédric & Chelil, Samy & Lauvernet, Claire & Tournebize, Julien, 2022. "Coupling of a subsurface drainage model with a soil reservoir model to simulate drainage discharge and drain flow start," Agricultural Water Management, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2011:i:8:p:1189-1196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.