IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i2p470-d1070493.html
   My bibliography  Save this article

Climate Change Impacts on Surface Runoff and Nutrient and Sediment Losses in Buchanan County, Iowa

Author

Listed:
  • Edward Osei

    (Department of Agriculture Education and Communication, Tarleton State University, Stephenville, TX 76402, USA)

  • Syed H. Jafri

    (Department of Accounting, Finance, and Economics, Tarleton State University, Stephenville, TX 76402, USA)

  • Philip W. Gassman

    (Center for Agricultural and Rural Development, Iowa State University, Ames, IA 50011, USA)

  • Ali Saleh

    (Texas Institute for Applied Environmental Research, Tarleton State University, Stephenville, TX 76402, USA)

  • Oscar Gallego

    (Texas Institute for Applied Environmental Research, Tarleton State University, Stephenville, TX 76402, USA)

Abstract

Nonpoint source pollution from cultivated croplands has often been associated with downstream water quality impairment in various watersheds. Given projected changes in global climate patterns, this study contributes to the existing literature by elucidating the impacts of climate projections on edge-of-field surface runoff and sediment and nutrient losses. We apply a well-tested ecohydrological model, Agricultural Policy Environmental eXtender (APEX), to continuous corn and corn–soybean fields in Buchanan County, Iowa, using climate scenarios developed from three well-known representative concentration pathway (RCP) climate projections: RCP 2.6, RCP 4.5, and RCP 8.5. Our results indicate that there will be a moderate to substantial increase in surface runoff, sediment, and nutrient losses depending upon the reference point of comparison (baseline scenario) and upon which climate scenario actually materializes. However, regardless of which climate scenario materializes and regardless of the baseline for comparison, soluble nitrogen losses are bound to increase, the magnitude depending upon the climate scenario. We find also that nutrient losses will be higher from continuous corn fields than from corn–soybean fields, given the tillage practices implemented on corn versus soybeans in the study area. Similarly, we find that nutrient losses may be higher from fields that receive manure than fields that receive only inorganic fertilizer, though this latter finding may be predicated upon the specific nutrient application rates utilized.

Suggested Citation

  • Edward Osei & Syed H. Jafri & Philip W. Gassman & Ali Saleh & Oscar Gallego, 2023. "Climate Change Impacts on Surface Runoff and Nutrient and Sediment Losses in Buchanan County, Iowa," Agriculture, MDPI, vol. 13(2), pages 1-21, February.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:470-:d:1070493
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/2/470/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/2/470/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Tianyang & Zhang, Yi & He, Binghui & Wu, Xiaoyu & Du, Yingni, 2022. "Nitrate loss by runoff in response to rainfall amount category and different combinations of fertilization and cultivation in sloping croplands," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Edward Osei & Syed H. Jafri & Ali Saleh & Philip W. Gassman & Oscar Gallego, 2023. "Simulated Climate Change Impacts on Corn and Soybean Yields in Buchanan County, Iowa," Agriculture, MDPI, vol. 13(2), pages 1-21, January.
    3. Timlin, Dennis & Chun, Jong Ahn & Meisinger, John & Kang, Kwangmin & Fleisher, David & Staver, Ken & Doherty, Craig & Russ, Andrew, 2019. "Evaluation of the agricultural policy environmental extender (APEX) for the Chesapeake Bay watershed," Agricultural Water Management, Elsevier, vol. 221(C), pages 477-485.
    4. Wallace, Carlington W. & Flanagan, Dennis C. & Engel, Bernard A., 2017. "Quantifying the effects of conservation practice implementation on predicted runoff and chemical losses under climate change," Agricultural Water Management, Elsevier, vol. 186(C), pages 51-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edward Osei & Syed H. Jafri & Philip W. Gassman & Ali Saleh, 2023. "Simulated Ecosystem and Farm-Level Economic Impacts of Conservation Tillage in a Northeastern Iowa County," Agriculture, MDPI, vol. 13(4), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edward Osei & Syed H. Jafri & Philip W. Gassman & Ali Saleh, 2023. "Simulated Ecosystem and Farm-Level Economic Impacts of Conservation Tillage in a Northeastern Iowa County," Agriculture, MDPI, vol. 13(4), pages 1-22, April.
    2. Renfang Chang & Yunqi Wang & Huifang Liu & Zhen Wang & Lei Ma & Jiancong Zhang & Junjie Li & Zhiyi Yan & Yihui Zhang & Danqing Li, 2024. "Optimizing Non-Point Source Pollution Management: Evaluating Cost-Effective Strategies in a Small Watershed within the Three Gorges Reservoir Area, China," Land, MDPI, vol. 13(6), pages 1-21, May.
    3. Plunge, Svajunas & Gudas, Mindaugas & Povilaitis, Arvydas, 2022. "Effectiveness of best management practices for non-point source agricultural water pollution control with changing climate – Lithuania’s case," Agricultural Water Management, Elsevier, vol. 267(C).
    4. Ramazan Çakmakçı & Mehmet Ali Salık & Songül Çakmakçı, 2023. "Assessment and Principles of Environmentally Sustainable Food and Agriculture Systems," Agriculture, MDPI, vol. 13(5), pages 1-27, May.
    5. Linlin Gao & Yong Wu & Ling Li & Chi Sun & Donghao Li & Xueke Liu, 2024. "A Risk Assessment Method for Phosphorus Loss in Intensive Agricultural Areas—A Case Study in Henan Province, China," Agriculture, MDPI, vol. 14(10), pages 1-16, September.
    6. Pignalosa, Antonio & Silvestri, Nicola & Pugliese, Francesco & Corniello, Alfonso & Gerundo, Carlo & Del Seppia, Nicola & Lucchesi, Massimo & Coscini, Nicola & De Paola, Francesco & Giugni, Maurizio, 2022. "Long-term simulations of Nature-Based Solutions effects on runoff and soil losses in a flat agricultural area within the catchment of Lake Massaciuccoli (Central Italy)," Agricultural Water Management, Elsevier, vol. 273(C).
    7. Edward Osei & Syed H. Jafri & Ali Saleh & Philip W. Gassman & Oscar Gallego, 2023. "Simulated Climate Change Impacts on Corn and Soybean Yields in Buchanan County, Iowa," Agriculture, MDPI, vol. 13(2), pages 1-21, January.
    8. Wu, Lei & Liu, Xia & Chen, Junlai & Li, Jinfeng & Yu, Yang & Ma, Xiaoyi, 2022. "Efficiency assessment of best management practices in sediment reduction by investigating cost-effective tradeoffs," Agricultural Water Management, Elsevier, vol. 265(C).
    9. Cori Salinas & Edward Osei & Mark Yu & Selin Guney & Ashley Lovell & Eunsung Kan, 2024. "Climate Change Effects on Texas Dryland Winter Wheat Yields," Agriculture, MDPI, vol. 14(2), pages 1-17, January.
    10. Zhang, Binbin & Yan, Sihui & Li, Bin & Wu, Shufang & Feng, Hao & Gao, Xiaodong & Song, Xiaolin & Siddique, Kadambot H.M., 2023. "Combining organic and chemical fertilizer plus water-saving system reduces environmental impacts and improves apple yield in rainfed apple orchards," Agricultural Water Management, Elsevier, vol. 288(C).
    11. Ivan Malashin & Vadim Tynchenko & Andrei Gantimurov & Vladimir Nelyub & Aleksei Borodulin & Yadviga Tynchenko, 2024. "Predicting Sustainable Crop Yields: Deep Learning and Explainable AI Tools," Sustainability, MDPI, vol. 16(21), pages 1-29, October.
    12. Zhao, Jie & Zhang, Xuepeng & Yang, Yadong & Zang, Huadong & Yan, Peng & Meki, Manyowa N. & Doro, Luca & Sui, Peng & Jeong, Jaehak & Zeng, Zhaohai, 2021. "Alternative cropping systems for groundwater irrigation sustainability in the North China Plain," Agricultural Water Management, Elsevier, vol. 250(C).
    13. Dechmi, Farida & Skhiri, Ahmed & Isidoro, Daniel, 2021. "Modeling environmental impact in a semi-arid intensive irrigated watershed," Agricultural Water Management, Elsevier, vol. 256(C).
    14. Zhang, Zepeng & Wang, Qingzheng & Guan, Qingyu & Xiao, Xiong & Mi, Jimin & Lv, Songjian, 2023. "Research on the optimal allocation of agricultural water and soil resources in the Heihe River Basin based on SWAT and intelligent optimization," Agricultural Water Management, Elsevier, vol. 279(C).

    More about this item

    Keywords

    climate change; sediment losses; nutrient losses; APEX; CMIP5; PRISM;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:470-:d:1070493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.