IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v213y2019icp174-184.html
   My bibliography  Save this article

Influence of operating pressure on emitter anti-clogging performance of drip irrigation system with high-sediment water

Author

Listed:
  • Liu, Zeyuan
  • Xiao, Yang
  • Li, Yunkai
  • Zhou, Bo
  • Feng, Ji
  • Han, Siqi
  • Muhammad, Tahir

Abstract

Reducing emitters operating pressure has been widely acknowledged as one of the most effective approach to reduce drip irrigation system maintenance and operation costs. However, utilization of low-quality water, such as high-sediment water, reclaimed water, and brackish water, inevitably increases the emitters clogging risks. To examine the influence of different pressure levels on emitter clogging behavior and regulation path, an in-situ accelerated experiment of emitter clogging with high-sediment water was conducted with five operating pressure levels. The experiment was conducted from July 15, 2016, to October 15, 2016 with a total running time of 720 h. The results showed that emitter anti-clogging capability was gradually decreased as the operating pressure decreased below 100 to 60 kPa and was significant decreased as the operating pressure decreased below 60 to 40 kPa or lower. Therefore, the operating pressure should be kept above 60 kPa to maintain the favorable emitter anti-clogging performance. The change of the operating pressure directly and indirectly influenced the formation of clogging substance in the emitters. In addition, at different operating pressures, the anti-clogging performance parameters discharge ratio variation (Dra), coefficient of uniformity (CU), statistical uniformity coefficient (Us), emitter discharge variation (qvar), clogging substance within emitters (CSE) and clogging substance within laterals (CSL) were linearly correlated with anti-clogging performance parameters (Dra, CU, Us, qvar, CSE, CSL) of 100 kPa. Therefore, basing the Dra, CU, Us, qvar, CSE and CSL at 100 kPa, a simple linear model was established to predict anti-clogging performance parameters at the different pressures e.g. 20, 40, 60 and 80 kPa. This study could provide technical support for the application and promotion of the drip irrigation system with high-sediment water.

Suggested Citation

  • Liu, Zeyuan & Xiao, Yang & Li, Yunkai & Zhou, Bo & Feng, Ji & Han, Siqi & Muhammad, Tahir, 2019. "Influence of operating pressure on emitter anti-clogging performance of drip irrigation system with high-sediment water," Agricultural Water Management, Elsevier, vol. 213(C), pages 174-184.
  • Handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:174-184
    DOI: 10.1016/j.agwat.2018.10.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741831610X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.10.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Peng & Li, Yunkai & Zhou, Bo & Zhou, Chunfa & Zhang, Zhijing & Li, Jiusheng, 2017. "Controlling mechanism of chlorination on emitter bio-clogging for drip irrigation using reclaimed water," Agricultural Water Management, Elsevier, vol. 184(C), pages 36-45.
    2. Liu, Haijun & Huang, Guanhua, 2009. "Laboratory experiment on drip emitter clogging with fresh water and treated sewage effluent," Agricultural Water Management, Elsevier, vol. 96(5), pages 745-756, May.
    3. Woltering, Lennart & Ibrahim, Ali & Pasternak, Dov & Ndjeunga, Jupiter, 2011. "The economics of low pressure drip irrigation and hand watering for vegetable production in the Sahel," Agricultural Water Management, Elsevier, vol. 99(1), pages 67-73.
    4. Zhou, Bo & Wang, Tianzhi & Li, Yunkai & Bralts, Vincent, 2017. "Effects of microbial community variation on bio-clogging in drip irrigation emitters using reclaimed water," Agricultural Water Management, Elsevier, vol. 194(C), pages 139-149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yayu & Xiao, Yang & Puig-Bargués, Jaume & Zhou, Bo & Liu, Zeyuan & Muhammad, Tahir & Liang, Hongbang & Maitusong, Memetmin & Wang, Zhenhua & Li, Yunkai, 2023. "Assessment of water quality ions in brackish water on drip irrigation system performance applied in saline areas," Agricultural Water Management, Elsevier, vol. 289(C).
    2. Hou, Peng & Liu, Lu & Tahir, Muhammad & Li, Yan & Wang, Xuejun & Shi, Ning & Xiao, Yang & Ma, Changjian & Li, Yunkai, 2024. "Effect of fertilization on emitter clogging in drip irrigation using high sediment water: Perspective of sediment discharge capacity," Agricultural Water Management, Elsevier, vol. 294(C).
    3. Hou, Peng & Ma, Changjian & Wang, Jia & Li, Yan & Zhang, Kai & Hou, Shance & Li, Jingzhi & Sun, Zeqiang & Xiao, Yang & Li, Yunkai, 2024. "Failure behavior of pressure compensating emitter under different operation pressures in drip irrigation systems," Agricultural Water Management, Elsevier, vol. 297(C).
    4. Liu, Zeyuan & Muhammad, Tahir & Puig-Bargués, Jaume & Han, Siqi & Ma, Yongjiu & Li, Yunkai, 2021. "Horizontal roughing filter for reducing emitter composite clogging in drip irrigation systems using high sediment water," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Peng Li & Hao Li & Jinshan Li & Xiuqiao Huang & Yang Liu & Yue Jiang, 2022. "Effect of Aeration on Blockage Regularity and Microbial Diversity of Blockage Substance in Drip Irrigation Emitter," Agriculture, MDPI, vol. 12(11), pages 1-22, November.
    6. Ji Feng & Weinan Wang & Haisheng Liu, 2020. "Study on Fluid Movement Characteristics inside the Emitter Flow Path of Drip Irrigation System Using the Yellow River Water," Sustainability, MDPI, vol. 12(4), pages 1-12, February.
    7. Liu, Zeyuan & Ma, Changjian & Xiao, Yang & Lili, Zhangzhong & Muhammad, Tahir & Li, Yunkai, 2023. "Application of chelated fertilizers to mitigate organic-inorganic fouling in brackish water drip irrigation systems," Agricultural Water Management, Elsevier, vol. 285(C).
    8. Muniz, Gustavo L. & Camargo, Antonio P. & Signorelli, Filipe & Bertran, Celso A. & Pereira, Diego J.S. & Frizzone, José A., 2022. "Influence of suspended solid particles on calcium carbonate fouling in dripper labyrinths," Agricultural Water Management, Elsevier, vol. 273(C).
    9. Lv, Chang & Niu, Wenquan & Du, Yadan & Sun, Jun & Dong, Aihong & Wu, Menglong & Mu, Fei & Zhu, Jinjin & Siddique, Kadambot H.M., 2024. "A meta-analysis of labyrinth channel emitter clogging characteristics under Yellow River water drip tape irrigation," Agricultural Water Management, Elsevier, vol. 291(C).
    10. Wang, Yayu & Muhammad, Tahir & Liu, Zeyuan & Liang, Hongbang & Wang, Xingpeng & Wang, Zhenhua & Ma, Changjian & Li, Yunkai, 2022. "Chelated copper reduces yet manganese fertilizer increases calcium-silica fouling in brackish water drip irrigation systems," Agricultural Water Management, Elsevier, vol. 269(C).
    11. Muhammad, Tahir & Zhou, Bo & Liu, Zeyuan & Chen, Xiuzhi & Li, Yunkai, 2021. "Effects of phosphorus-fertigation on emitter clogging in drip irrigation system with saline water," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Wang, Yayu & Muhammad, Tahir & Liu, Zeyuan & Ma, Changjian & Zhang, Changsheng & Wang, Zhenhua & He, Xin & Li, Yunkai, 2022. "Compounding with humic acid improved nutrient uniformity in drip fertigation system using brackish water: The perspective of emitter clogging," Agricultural Water Management, Elsevier, vol. 269(C).
    13. Rui Li & Qibiao Han & Conghui Dong & Xi Nan & Hao Li & Hao Sun & Hui Li & Peng Li & Yawei Hu, 2023. "Effect and Mechanism of Micro-Nano Aeration Treatment on a Drip Irrigation Emitter Based on Groundwater," Agriculture, MDPI, vol. 13(11), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Hongxu & Li, Yunkai & Wang, Yan & Zhou, Bo & Bhattarai, Rabin, 2019. "Composite fouling of drip emitters applying surface water with high sand concentration: Dynamic variation and formation mechanism," Agricultural Water Management, Elsevier, vol. 215(C), pages 25-43.
    2. Han, Siqi & Li, Yunkai & Zhou, Bo & Liu, Zeyuan & Feng, Ji & Xiao, Yang, 2019. "An in-situ accelerated experimental testing method for drip irrigation emitter clogging with inferior water," Agricultural Water Management, Elsevier, vol. 212(C), pages 136-154.
    3. Zhou, Bo & Li, Yunkai & Xue, Song & Feng, Ji, 2019. "Variation of microorganisms in drip irrigation systems using high-sand surface water," Agricultural Water Management, Elsevier, vol. 218(C), pages 37-47.
    4. Li, Yunkai & Pan, Jiachong & Chen, Xiuzhi & Xue, Song & Feng, Ji & Muhammad, Tahir & Zhou, Bo, 2019. "Dynamic effects of chemical precipitates on drip irrigation system clogging using water with high sediment and salt loads," Agricultural Water Management, Elsevier, vol. 213(C), pages 833-842.
    5. Soliman, Azza I.E. & Morad, M.M. & Wasfy, Kamal I. & Moursy, M.A.M., 2020. "Utilization of aquaculture drainage for enhancing onion crop yield under surface and subsurface drip irrigation systems," Agricultural Water Management, Elsevier, vol. 239(C).
    6. Heitkämper, Katja & Stehle, Thomas & Schick, Matthias, 2015. "Working time requirement for different field irrigation methods," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 4(2), January.
    7. Muhammad, Tahir & Zhou, Bo & Puig-Bargu´es, Jaume & Ding, Can & Li, Shuqin & Manan, Irum & Zhou, Yunpeng & Liu, Zeyuan & Li, Yunkai, 2022. "Assessment of emitter clogging with multiple fouling and root intrusion in sub-surface drip irrigation during 5-year sugarcane growth," Agricultural Water Management, Elsevier, vol. 274(C).
    8. Puig-Bargués, J. & Arbat, G. & Elbana, M. & Duran-Ros, M. & Barragán, J. & de Cartagena, F. Ramírez & Lamm, F.R., 2010. "Effect of flushing frequency on emitter clogging in microirrigation with effluents," Agricultural Water Management, Elsevier, vol. 97(6), pages 883-891, June.
    9. Mwangi, Joseph Kanyua & Crewett, Wibke, 2019. "The impact of irrigation on small-scale African indigenous vegetable growers’ market access in peri-urban Kenya," Agricultural Water Management, Elsevier, vol. 212(C), pages 295-305.
    10. Zhang, Wenqian & Niu, Wenquan & Li, Guochun & Wang, Jie & Wang, Yanbang & Dong, Aihong, 2020. "Lateral inner environment changes and effects on emitter clogging risk for different irrigation times," Agricultural Water Management, Elsevier, vol. 233(C).
    11. Zhou, Bo & Wang, Tianzhi & Li, Yunkai & Bralts, Vincent, 2017. "Effects of microbial community variation on bio-clogging in drip irrigation emitters using reclaimed water," Agricultural Water Management, Elsevier, vol. 194(C), pages 139-149.
    12. Deepak Singh & Neelam Patel & Agossou Gadedjisso-Tossou & Sridhar Patra & Nisha Singh & Pushpendra Kumar Singh, 2020. "Incidence of Escherichia coli in Vegetable Crops and Soil Profile Drip Irrigated with Primarily Treated Municipal Wastewater in a Semi-Arid Peri Urban Area," Agriculture, MDPI, vol. 10(7), pages 1-17, July.
    13. Zhangzhong, Lili & Yang, Peiling & Zhen, Wengang & Zhang, Xin & Wang, Caiyuan, 2019. "A kinetic model for the chemical clogging of drip irrigation system using saline water," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    14. Petit, Julien & García, Sílvia Mas & Molle, Bruno & Bendoula, Ryad & Ait-Mouheb, Nassim, 2022. "Methods for drip irrigation clogging detection, analysis and understanding: State of the art and perspectives," Agricultural Water Management, Elsevier, vol. 272(C).
    15. Zhou, Bo & Zhou, Hongxu & Puig-Bargués, Jaume & Li, Yunkai, 2019. "Using an anti-clogging relative index (CRI) to assess emitters rapidly for drip irrigation systems with multiple low-quality water sources," Agricultural Water Management, Elsevier, vol. 221(C), pages 270-278.
    16. Oliver, M.M.H. & Hewa, G.A. & Pezzaniti, D., 2014. "Bio-fouling of subsurface type drip emitters applying reclaimed water under medium soil thermal variation," Agricultural Water Management, Elsevier, vol. 133(C), pages 12-23.
    17. Ma, Changjian & Li, Mengyao & Hou, Peng & Wang, Xuejun & Sun, Zeqiang & Li, Yan & Xiao, Yang & Li, Yunkai, 2024. "Biofilm dynamic changes in drip irrigation emitter flow channels using reclaimed water," Agricultural Water Management, Elsevier, vol. 291(C).
    18. Duran-Ros, Miquel & Puig-Bargués, Jaume & Cufí, Sílvia & Solé-Torres, Carles & Arbat, Gerard & Pujol, Joan & Ramírez de Cartagena, Francisco, 2022. "Effect of different filter media on emitter clogging using reclaimed effluents," Agricultural Water Management, Elsevier, vol. 266(C).
    19. Liu, Zeyuan & Ma, Changjian & Xiao, Yang & Lili, Zhangzhong & Muhammad, Tahir & Li, Yunkai, 2023. "Application of chelated fertilizers to mitigate organic-inorganic fouling in brackish water drip irrigation systems," Agricultural Water Management, Elsevier, vol. 285(C).
    20. Solé-Torres, Carles & Puig-Bargués, Jaume & Duran-Ros, Miquel & Arbat, Gerard & Pujol, Joan & Ramírez de Cartagena, Francisco, 2019. "Effect of different sand filter underdrain designs on emitter clogging using reclaimed effluents," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:174-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.