IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v269y2022ics0378377422002025.html
   My bibliography  Save this article

Chelated copper reduces yet manganese fertilizer increases calcium-silica fouling in brackish water drip irrigation systems

Author

Listed:
  • Wang, Yayu
  • Muhammad, Tahir
  • Liu, Zeyuan
  • Liang, Hongbang
  • Wang, Xingpeng
  • Wang, Zhenhua
  • Ma, Changjian
  • Li, Yunkai

Abstract

Water scarcity and deficiency of trace elements (e.g., Cu and Mn) in soils of arid and semi-arid areas are major constrains to crop growth and development. The application of brackish water drip irrigation system (BWDIs), coupled with trace elements, is probably an effective way to solve this problem. However, fouling problems caused by trace elements in BWDIs were inevitable. Therefore, this paper evaluates the mechanism of different types of trace element chelated fertilizers on the fouling of emitters in BWDIs by using long-period, high-frequency periodic flow monitoring and mineral fraction analysis. The influence of chelated fertilizers such as copper (EDTA-Cu) and manganese (EDTA-Mn), and traditional micro-fertilizers copper sulfate (CuSO4) and manganese sulfate (MnSO4) on emitter fouling in BWDIs were investigated. Results suggested, compared with CK, the EDTA-Cu effectively alleviated the emitter fouling, increasing the average discharge ratio (Dra) and Christiansen coefficient of uniformity (CU) by 21.0%− 28.9% and 36.7%− 67.6%, respectively. Due to the strong adsorption ability, EDTA-Cu adsorb the Ca2+ and Mg2+ in BWDIs, which enhanced the structural stability, reduced the flocculation and deposition ability in the fouling, and indirectly reduced the content of calcium and silica fouling. In addition, compared with CK, the EDTA-Mn significantly aggravated the emitter fouling in BWDIs, decreasing the Dra and CU by 18.2%− 22.5% and 24.5%− 43.1% respectively. EDTA-Mn directly increased the content of Ca2+ and Mg2+ in BWDIs due to strong flocculation, which destroyed the morphology of EDTA-Mn chelates and indirectly increased the content of calcium silica fouling (calcite, muscovite, k-feldspar, dolomite and chlorite), thus reduced the anti-clogging ability of BWDIs. Considering these results, this study does not recommend the application of EDTA-Mn for manganese fertilizer in BWDIs. This study provides a new perspective on the rapid application of micronutrient fertilization in BWDIs, with potential implications for sustainable development in arid and semi-arid areas.

Suggested Citation

  • Wang, Yayu & Muhammad, Tahir & Liu, Zeyuan & Liang, Hongbang & Wang, Xingpeng & Wang, Zhenhua & Ma, Changjian & Li, Yunkai, 2022. "Chelated copper reduces yet manganese fertilizer increases calcium-silica fouling in brackish water drip irrigation systems," Agricultural Water Management, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002025
    DOI: 10.1016/j.agwat.2022.107655
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422002025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107655?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Tao & Liu, Xinhui & Sun, Tao, 2011. "The effects of groundwater table and flood irrigation strategies on soil water and salt dynamics and reed water use in the Yellow River Delta, China," Ecological Modelling, Elsevier, vol. 222(2), pages 241-252.
    2. Liu, Chunye & Wang, Rui & Wang, Wene & Hu, Xiaotao & Cheng, Yong & Liu, Fulai, 2021. "Effect of fertilizer solution concentrations on filter clogging in drip fertigation systems," Agricultural Water Management, Elsevier, vol. 250(C).
    3. Yanling Zhi & Fan Zhang & Huimin Wang & Teng Qin & Jinping Tong & Ting Wang & Zhiqiang Wang & Jinle Kang & Zhou Fang, 2022. "Agricultural Water Use Efficiency: Is There Any Spatial Correlation between Different Regions?," Land, MDPI, vol. 11(1), pages 1-22, January.
    4. Cary, L. & Surdyk, N. & Psarras, G. & Kasapakis, I. & Chartzoulakis, K. & Sandei, L. & Guerrot, C. & Pettenati, M. & Kloppmann, W., 2015. "Short-term assessment of the dynamics of elements in wastewater irrigated Mediterranean soil and tomato fruits through sequential dissolution and lead isotopic signatures," Agricultural Water Management, Elsevier, vol. 155(C), pages 87-99.
    5. Li, Yunkai & Pan, Jiachong & Chen, Xiuzhi & Xue, Song & Feng, Ji & Muhammad, Tahir & Zhou, Bo, 2019. "Dynamic effects of chemical precipitates on drip irrigation system clogging using water with high sediment and salt loads," Agricultural Water Management, Elsevier, vol. 213(C), pages 833-842.
    6. Yuefen Li & Heyang Gong & Shujie Li & Yushu Zhang, 2020. "Ecological Stoichiometry Homeostasis of Six Microelements in Leymus chinensis Growing in Soda Saline-Alkali Soil," Sustainability, MDPI, vol. 12(10), pages 1-13, May.
    7. Cao, Xinchun & Cui, Simeng & Shu, Rui & Wu, Mengyang, 2020. "Misestimation of water saving in agricultural virtual water trade by not considering the role of irrigation," Agricultural Water Management, Elsevier, vol. 241(C).
    8. Fang, Lin & Zhang, Lin, 2020. "Does the trading of water rights encourage technology improvement and agricultural water conservation?," Agricultural Water Management, Elsevier, vol. 233(C).
    9. Liu, Zeyuan & Xiao, Yang & Li, Yunkai & Zhou, Bo & Feng, Ji & Han, Siqi & Muhammad, Tahir, 2019. "Influence of operating pressure on emitter anti-clogging performance of drip irrigation system with high-sediment water," Agricultural Water Management, Elsevier, vol. 213(C), pages 174-184.
    10. Han, Siqi & Li, Yunkai & Zhou, Bo & Liu, Zeyuan & Feng, Ji & Xiao, Yang, 2019. "An in-situ accelerated experimental testing method for drip irrigation emitter clogging with inferior water," Agricultural Water Management, Elsevier, vol. 212(C), pages 136-154.
    11. Muhammad, Tahir & Zhou, Bo & Liu, Zeyuan & Chen, Xiuzhi & Li, Yunkai, 2021. "Effects of phosphorus-fertigation on emitter clogging in drip irrigation system with saline water," Agricultural Water Management, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianzhe Hao & Xiaojuan Shi & Aziz Khan & Nannan Li & Feng Shi & Junhong Li & Yu Tian & Peng Han & Jun Wang & Honghai Luo, 2022. "Industrial Organic Wastewater through Drip Irrigation to Reduce Chemical Fertilizer Input and Increase Use Efficiency by Promoting N and P Absorption of Cotton in Arid Areas," Agriculture, MDPI, vol. 12(12), pages 1-20, November.
    2. Wang, Yayu & Xiao, Yang & Puig-Bargués, Jaume & Zhou, Bo & Liu, Zeyuan & Muhammad, Tahir & Liang, Hongbang & Maitusong, Memetmin & Wang, Zhenhua & Li, Yunkai, 2023. "Assessment of water quality ions in brackish water on drip irrigation system performance applied in saline areas," Agricultural Water Management, Elsevier, vol. 289(C).
    3. Liu, Zeyuan & Ma, Changjian & Xiao, Yang & Lili, Zhangzhong & Muhammad, Tahir & Li, Yunkai, 2023. "Application of chelated fertilizers to mitigate organic-inorganic fouling in brackish water drip irrigation systems," Agricultural Water Management, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Peng & Liu, Lu & Tahir, Muhammad & Li, Yan & Wang, Xuejun & Shi, Ning & Xiao, Yang & Ma, Changjian & Li, Yunkai, 2024. "Effect of fertilization on emitter clogging in drip irrigation using high sediment water: Perspective of sediment discharge capacity," Agricultural Water Management, Elsevier, vol. 294(C).
    2. Wang, Yayu & Muhammad, Tahir & Liu, Zeyuan & Ma, Changjian & Zhang, Changsheng & Wang, Zhenhua & He, Xin & Li, Yunkai, 2022. "Compounding with humic acid improved nutrient uniformity in drip fertigation system using brackish water: The perspective of emitter clogging," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Liu, Zeyuan & Ma, Changjian & Xiao, Yang & Lili, Zhangzhong & Muhammad, Tahir & Li, Yunkai, 2023. "Application of chelated fertilizers to mitigate organic-inorganic fouling in brackish water drip irrigation systems," Agricultural Water Management, Elsevier, vol. 285(C).
    4. Hou, Peng & Ma, Changjian & Wang, Jia & Li, Yan & Zhang, Kai & Hou, Shance & Li, Jingzhi & Sun, Zeqiang & Xiao, Yang & Li, Yunkai, 2024. "Failure behavior of pressure compensating emitter under different operation pressures in drip irrigation systems," Agricultural Water Management, Elsevier, vol. 297(C).
    5. Muhammad, Tahir & Zhou, Bo & Puig-Bargu´es, Jaume & Ding, Can & Li, Shuqin & Manan, Irum & Zhou, Yunpeng & Liu, Zeyuan & Li, Yunkai, 2022. "Assessment of emitter clogging with multiple fouling and root intrusion in sub-surface drip irrigation during 5-year sugarcane growth," Agricultural Water Management, Elsevier, vol. 274(C).
    6. Wang, Yayu & Xiao, Yang & Puig-Bargués, Jaume & Zhou, Bo & Liu, Zeyuan & Muhammad, Tahir & Liang, Hongbang & Maitusong, Memetmin & Wang, Zhenhua & Li, Yunkai, 2023. "Assessment of water quality ions in brackish water on drip irrigation system performance applied in saline areas," Agricultural Water Management, Elsevier, vol. 289(C).
    7. Yuan, Huabin & Wang, Yue & Sun, Zeqiang & Shi, Ning & Li, Bowen & Ma, Changjian & Xiao, Yang & Li, Quanqi & Li, Yunkai, 2023. "Increasing iron use efficiency by controlling emitter clogging in drip irrigation systems," Agricultural Water Management, Elsevier, vol. 290(C).
    8. Petit, Julien & García, Sílvia Mas & Molle, Bruno & Bendoula, Ryad & Ait-Mouheb, Nassim, 2022. "Methods for drip irrigation clogging detection, analysis and understanding: State of the art and perspectives," Agricultural Water Management, Elsevier, vol. 272(C).
    9. Ma, Changjian & Li, Mengyao & Hou, Peng & Wang, Xuejun & Sun, Zeqiang & Li, Yan & Xiao, Yang & Li, Yunkai, 2024. "Biofilm dynamic changes in drip irrigation emitter flow channels using reclaimed water," Agricultural Water Management, Elsevier, vol. 291(C).
    10. Lv, Chang & Niu, Wenquan & Du, Yadan & Sun, Jun & Dong, Aihong & Wu, Menglong & Mu, Fei & Zhu, Jinjin & Siddique, Kadambot H.M., 2024. "A meta-analysis of labyrinth channel emitter clogging characteristics under Yellow River water drip tape irrigation," Agricultural Water Management, Elsevier, vol. 291(C).
    11. Muniz, Gustavo L. & Camargo, Antonio P. & Signorelli, Filipe & Bertran, Celso A. & Pereira, Diego J.S. & Frizzone, José A., 2022. "Influence of suspended solid particles on calcium carbonate fouling in dripper labyrinths," Agricultural Water Management, Elsevier, vol. 273(C).
    12. Shen, Yan & Puig-Bargués, Jaume & Li, Mengyao & Xiao, Yang & Li, Qiang & Li, Yunkai, 2022. "Physical, chemical and biological emitter clogging behaviors in drip irrigation systems using high-sediment loaded water," Agricultural Water Management, Elsevier, vol. 270(C).
    13. Rui Li & Qibiao Han & Conghui Dong & Xi Nan & Hao Li & Hao Sun & Hui Li & Peng Li & Yawei Hu, 2023. "Effect and Mechanism of Micro-Nano Aeration Treatment on a Drip Irrigation Emitter Based on Groundwater," Agriculture, MDPI, vol. 13(11), pages 1-17, October.
    14. Muhammad, Tahir & Zhou, Bo & Liu, Zeyuan & Chen, Xiuzhi & Li, Yunkai, 2021. "Effects of phosphorus-fertigation on emitter clogging in drip irrigation system with saline water," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Kaili Shi & Lili Zhangzhong & Furong Han & Shirui Zhang & Rui Guo & Xueying Yao, 2023. "Reducing Emitter Clogging in Drip Fertigation Systems by Magnetization Technology," Sustainability, MDPI, vol. 15(4), pages 1-11, February.
    16. Liu, Zeyuan & Muhammad, Tahir & Puig-Bargués, Jaume & Han, Siqi & Ma, Yongjiu & Li, Yunkai, 2021. "Horizontal roughing filter for reducing emitter composite clogging in drip irrigation systems using high sediment water," Agricultural Water Management, Elsevier, vol. 258(C).
    17. Muhammad, Tahir & Xiao, Yang & Puig-Bargués, Jaume & Liu, Wenchao & Liu, Zeyuan & Chen, Xiuzhi & Li, Yunkai, 2021. "Effects of coupling multiple factors on CaCO3 fouling in agricultural saline water distribution systems," Agricultural Water Management, Elsevier, vol. 248(C).
    18. Hou, Peng & Xiao, Yang & Muhammad, Tahir & Zhou, Bo & Song, Peng & Zhou, Yunpeng & Han, Siqi & Wen, Jiaxin & Li, Yunkai, 2023. "Multi-factorial failure of pressure-compensating emitters in drip fertigation systems: An in-situ sampling investigation," Agricultural Water Management, Elsevier, vol. 275(C).
    19. Barnard, J.H. & van Rensburg, L.D. & Bennie, A.T.P. & du Preez, C.C., 2013. "Simulating water uptake of irrigated field crops from non-saline water table soils: Validation and application of the model SWAMP," Agricultural Water Management, Elsevier, vol. 126(C), pages 19-32.
    20. Ejovi Akpojevwe Abafe & Yonas T. Bahta & Henry Jordaan, 2022. "Exploring Biblioshiny for Historical Assessment of Global Research on Sustainable Use of Water in Agriculture," Sustainability, MDPI, vol. 14(17), pages 1-34, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.