IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v215y2019icp25-43.html
   My bibliography  Save this article

Composite fouling of drip emitters applying surface water with high sand concentration: Dynamic variation and formation mechanism

Author

Listed:
  • Zhou, Hongxu
  • Li, Yunkai
  • Wang, Yan
  • Zhou, Bo
  • Bhattarai, Rabin

Abstract

Drip irrigation applying surface water with high sand concentration leads to a higher risk of composite fouling, which is the most complex material type of clogging. Thus, understanding the dynamic variation and formation mechanism of composite fouling is the prerequisite for controlling clogging substance and establishing rational anti-clogging method to promote high-sand surface water for drip irrigation. In this paper, the components of the composite fouling were studied through the emitter composite fouling experiment under three drip irrigation frequencies. The results indicated that the particulate fouling composition (solid particle, SP), crystallization fouling composition (CaCO3 and MgCO3 precipitate, C-MP), and biofouling composition (extracellular polymeric substance, EPS, and microbial activity, MA) grew as the system operated. Significant positive linear correlations were obtained among different compositions (R2>0.82, p < 0.01), and the microorganism attached on the surface of SP and continuously secreted EPS mutually promoted the formation of biofouling and particulate fouling. The condensation of microcrystals formed by C-MP with SP promoted the formation of crystallization and particulate fouling, and phosphorus anions enhanced flocculation and agglomeration between particles. Thus, physical-chemical-biological reactions occurred to promote mutual growth, which ultimately led to composite fouling formation. Meanwhile, various components in the composite fouling increased gradually with higher operating frequency, which could aggravate the emitter clogging and decrease the relative discharge of the drip irrigation emitters (Dra) and the uniformity coefficient (CU).

Suggested Citation

  • Zhou, Hongxu & Li, Yunkai & Wang, Yan & Zhou, Bo & Bhattarai, Rabin, 2019. "Composite fouling of drip emitters applying surface water with high sand concentration: Dynamic variation and formation mechanism," Agricultural Water Management, Elsevier, vol. 215(C), pages 25-43.
  • Handle: RePEc:eee:agiwat:v:215:y:2019:i:c:p:25-43
    DOI: 10.1016/j.agwat.2019.01.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418303305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.01.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Peng & Li, Yunkai & Zhou, Bo & Zhou, Chunfa & Zhang, Zhijing & Li, Jiusheng, 2017. "Controlling mechanism of chlorination on emitter bio-clogging for drip irrigation using reclaimed water," Agricultural Water Management, Elsevier, vol. 184(C), pages 36-45.
    2. Liu, Haijun & Huang, Guanhua, 2009. "Laboratory experiment on drip emitter clogging with fresh water and treated sewage effluent," Agricultural Water Management, Elsevier, vol. 96(5), pages 745-756, May.
    3. Kuruneru, Sahan Trushad Wickramasooriya & Sauret, Emilie & Saha, Suvash Chandra & Gu, YuanTong, 2016. "Numerical investigation of the temporal evolution of particulate fouling in metal foams for air-cooled heat exchangers," Applied Energy, Elsevier, vol. 184(C), pages 531-547.
    4. Li, Yunkai & Pan, Jiachong & Chen, Xiuzhi & Xue, Song & Feng, Ji & Muhammad, Tahir & Zhou, Bo, 2019. "Dynamic effects of chemical precipitates on drip irrigation system clogging using water with high sediment and salt loads," Agricultural Water Management, Elsevier, vol. 213(C), pages 833-842.
    5. Oliver, M.M.H. & Hewa, G.A. & Pezzaniti, D., 2014. "Bio-fouling of subsurface type drip emitters applying reclaimed water under medium soil thermal variation," Agricultural Water Management, Elsevier, vol. 133(C), pages 12-23.
    6. Wei, Qingsong & Shi, Yusheng & Dong, Wenchu & Lu, Gang & Huang, Shuhuai, 2006. "Study on hydraulic performance of drip emitters by computational fluid dynamics," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 130-136, July.
    7. Oktem, A., 2008. "Effect of water shortage on yield, and protein and mineral compositions of drip-irrigated sweet corn in sustainable agricultural systems," Agricultural Water Management, Elsevier, vol. 95(9), pages 1003-1010, September.
    8. Zhou, Bo & Wang, Tianzhi & Li, Yunkai & Bralts, Vincent, 2017. "Effects of microbial community variation on bio-clogging in drip irrigation emitters using reclaimed water," Agricultural Water Management, Elsevier, vol. 194(C), pages 139-149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miquel Duran-Ros & Joan Pujol & Toni Pujol & Sílvia Cufí & Jonathan Graciano-Uribe & Gerard Arbat & Francisco Ramírez de Cartagena & Jaume Puig-Bargués, 2024. "Efficiency of Backwashing in Removing Solids from Sand Media Filters for Drip Irrigation Systems," Agriculture, MDPI, vol. 14(9), pages 1-14, September.
    2. Hou, Peng & Ma, Changjian & Wang, Jia & Li, Yan & Zhang, Kai & Hou, Shance & Li, Jingzhi & Sun, Zeqiang & Xiao, Yang & Li, Yunkai, 2024. "Failure behavior of pressure compensating emitter under different operation pressures in drip irrigation systems," Agricultural Water Management, Elsevier, vol. 297(C).
    3. Liu, Zeyuan & Muhammad, Tahir & Puig-Bargués, Jaume & Han, Siqi & Ma, Yongjiu & Li, Yunkai, 2021. "Horizontal roughing filter for reducing emitter composite clogging in drip irrigation systems using high sediment water," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Zhang, Wenqian & Lv, Chang & Zhao, Xue & Dong, Aihong & Niu, Wenquan, 2021. "The influence mechanism of the main suspended particles of Yellow River sand on the emitter clogging − An attempt to improve the irrigation water utilization efficiency in Yellow River basin," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Wang, Yayu & Puig-Bargués, Jaume & Ma, Changjian & Xiao, Yang & Maitusong, Memetmin & Li, Yunkai, 2024. "Influence and selection of nitrogen and phosphorus compound fertilizers on emitter clogging using brackish water in drip irrigation systems," Agricultural Water Management, Elsevier, vol. 291(C).
    6. Hou, Peng & Liu, Lu & Tahir, Muhammad & Li, Yan & Wang, Xuejun & Shi, Ning & Xiao, Yang & Ma, Changjian & Li, Yunkai, 2024. "Effect of fertilization on emitter clogging in drip irrigation using high sediment water: Perspective of sediment discharge capacity," Agricultural Water Management, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petit, Julien & García, Sílvia Mas & Molle, Bruno & Bendoula, Ryad & Ait-Mouheb, Nassim, 2022. "Methods for drip irrigation clogging detection, analysis and understanding: State of the art and perspectives," Agricultural Water Management, Elsevier, vol. 272(C).
    2. Liu, Zeyuan & Xiao, Yang & Li, Yunkai & Zhou, Bo & Feng, Ji & Han, Siqi & Muhammad, Tahir, 2019. "Influence of operating pressure on emitter anti-clogging performance of drip irrigation system with high-sediment water," Agricultural Water Management, Elsevier, vol. 213(C), pages 174-184.
    3. Muhammad, Tahir & Zhou, Bo & Puig-Bargu´es, Jaume & Ding, Can & Li, Shuqin & Manan, Irum & Zhou, Yunpeng & Liu, Zeyuan & Li, Yunkai, 2022. "Assessment of emitter clogging with multiple fouling and root intrusion in sub-surface drip irrigation during 5-year sugarcane growth," Agricultural Water Management, Elsevier, vol. 274(C).
    4. Han, Siqi & Li, Yunkai & Zhou, Bo & Liu, Zeyuan & Feng, Ji & Xiao, Yang, 2019. "An in-situ accelerated experimental testing method for drip irrigation emitter clogging with inferior water," Agricultural Water Management, Elsevier, vol. 212(C), pages 136-154.
    5. Zhou, Bo & Li, Yunkai & Xue, Song & Feng, Ji, 2019. "Variation of microorganisms in drip irrigation systems using high-sand surface water," Agricultural Water Management, Elsevier, vol. 218(C), pages 37-47.
    6. Zhou, Bo & Wang, Tianzhi & Li, Yunkai & Bralts, Vincent, 2017. "Effects of microbial community variation on bio-clogging in drip irrigation emitters using reclaimed water," Agricultural Water Management, Elsevier, vol. 194(C), pages 139-149.
    7. Zhou, Bo & Zhou, Hongxu & Puig-Bargués, Jaume & Li, Yunkai, 2019. "Using an anti-clogging relative index (CRI) to assess emitters rapidly for drip irrigation systems with multiple low-quality water sources," Agricultural Water Management, Elsevier, vol. 221(C), pages 270-278.
    8. Ma, Changjian & Li, Mengyao & Hou, Peng & Wang, Xuejun & Sun, Zeqiang & Li, Yan & Xiao, Yang & Li, Yunkai, 2024. "Biofilm dynamic changes in drip irrigation emitter flow channels using reclaimed water," Agricultural Water Management, Elsevier, vol. 291(C).
    9. Li, Yunkai & Pan, Jiachong & Chen, Xiuzhi & Xue, Song & Feng, Ji & Muhammad, Tahir & Zhou, Bo, 2019. "Dynamic effects of chemical precipitates on drip irrigation system clogging using water with high sediment and salt loads," Agricultural Water Management, Elsevier, vol. 213(C), pages 833-842.
    10. Muniz, Gustavo L. & Camargo, Antonio P. & Signorelli, Filipe & Bertran, Celso A. & Pereira, Diego J.S. & Frizzone, José A., 2022. "Influence of suspended solid particles on calcium carbonate fouling in dripper labyrinths," Agricultural Water Management, Elsevier, vol. 273(C).
    11. Duran-Ros, Miquel & Puig-Bargués, Jaume & Cufí, Sílvia & Solé-Torres, Carles & Arbat, Gerard & Pujol, Joan & Ramírez de Cartagena, Francisco, 2022. "Effect of different filter media on emitter clogging using reclaimed effluents," Agricultural Water Management, Elsevier, vol. 266(C).
    12. Liu, Zeyuan & Ma, Changjian & Xiao, Yang & Lili, Zhangzhong & Muhammad, Tahir & Li, Yunkai, 2023. "Application of chelated fertilizers to mitigate organic-inorganic fouling in brackish water drip irrigation systems," Agricultural Water Management, Elsevier, vol. 285(C).
    13. Solé-Torres, Carles & Puig-Bargués, Jaume & Duran-Ros, Miquel & Arbat, Gerard & Pujol, Joan & Ramírez de Cartagena, Francisco, 2019. "Effect of different sand filter underdrain designs on emitter clogging using reclaimed effluents," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    14. Soliman, Azza I.E. & Morad, M.M. & Wasfy, Kamal I. & Moursy, M.A.M., 2020. "Utilization of aquaculture drainage for enhancing onion crop yield under surface and subsurface drip irrigation systems," Agricultural Water Management, Elsevier, vol. 239(C).
    15. Oliver, M.M.H. & Hewa, Guna Alankerage & Pezzaniti, David, 2016. "Thermal variation and pressure compensated emitters," Agricultural Water Management, Elsevier, vol. 176(C), pages 29-39.
    16. Wang, Yayu & Xiao, Yang & Puig-Bargués, Jaume & Zhou, Bo & Liu, Zeyuan & Muhammad, Tahir & Liang, Hongbang & Maitusong, Memetmin & Wang, Zhenhua & Li, Yunkai, 2023. "Assessment of water quality ions in brackish water on drip irrigation system performance applied in saline areas," Agricultural Water Management, Elsevier, vol. 289(C).
    17. Dai, Zhiguang & Fei, Liangjun & Huang, Deliang & Zeng, Jian & Chen, Lin & Cai, Yaohui, 2019. "Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region," Agricultural Water Management, Elsevier, vol. 213(C), pages 146-154.
    18. Wang, Yayu & Muhammad, Tahir & Liu, Zeyuan & Liang, Hongbang & Wang, Xingpeng & Wang, Zhenhua & Ma, Changjian & Li, Yunkai, 2022. "Chelated copper reduces yet manganese fertilizer increases calcium-silica fouling in brackish water drip irrigation systems," Agricultural Water Management, Elsevier, vol. 269(C).
    19. Puig-Bargués, J. & Arbat, G. & Elbana, M. & Duran-Ros, M. & Barragán, J. & de Cartagena, F. Ramírez & Lamm, F.R., 2010. "Effect of flushing frequency on emitter clogging in microirrigation with effluents," Agricultural Water Management, Elsevier, vol. 97(6), pages 883-891, June.
    20. Luceño, José A. & Martín, Mariano, 2018. "Two-step optimization procedure for the conceptual design of A-frame systems for solar power plants," Energy, Elsevier, vol. 165(PB), pages 483-500.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:215:y:2019:i:c:p:25-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.