IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v297y2024ics0378377424001707.html
   My bibliography  Save this article

Failure behavior of pressure compensating emitter under different operation pressures in drip irrigation systems

Author

Listed:
  • Hou, Peng
  • Ma, Changjian
  • Wang, Jia
  • Li, Yan
  • Zhang, Kai
  • Hou, Shance
  • Li, Jingzhi
  • Sun, Zeqiang
  • Xiao, Yang
  • Li, Yunkai

Abstract

Pressure compensating emitters (PCE) can maintain a consistent irrigation flow rate under varying pressures through its internal compensation diaphragm and effectively improve the irrigation uniformity of drip irrigation systems. However, the PCE function is prone to failure, particularly when using marginal water, which can cause various technical and economic problems. To date, little is known about the failure behavior of PCE. This study investigated the effects of three pressures (0.1Mpa, 0.2Mpa, and 0.3Mpa) on the failure behavior of PCE. Then the dynamic changes in clogging substances and diaphragm performances in PCE channel were monitored. The results showed that as the system operation increased, the performance of PCE gradually decreased. The CU>80% running time was 172.8–634.9 h, and the flow index >0.2 running time was 120.1–768.1 h. The failure of PCE is primarily caused by two factors: clogging of the PCE flow channel and deterioration of the diaphragm mechanical performances. The flow rate of PCE increased by 22.6% on average at 0.3Mpa compared to 0.1Mpa, and clogging substances in the PCE flow channel decreased by 19.8%. Meanwhile, increasing the operating pressure improved the mechanical performance of the diaphragm. Under the operating pressure of 0.3Mpa, the diaphragm’s elasticity and hardness increased by 14.6% and 12.8%, respectively. Therefore, this study is of significance in popularizing PCE drip irrigation technology and marginal water utilization.

Suggested Citation

  • Hou, Peng & Ma, Changjian & Wang, Jia & Li, Yan & Zhang, Kai & Hou, Shance & Li, Jingzhi & Sun, Zeqiang & Xiao, Yang & Li, Yunkai, 2024. "Failure behavior of pressure compensating emitter under different operation pressures in drip irrigation systems," Agricultural Water Management, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:agiwat:v:297:y:2024:i:c:s0378377424001707
    DOI: 10.1016/j.agwat.2024.108835
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424001707
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108835?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Hongxu & Li, Yunkai & Wang, Yan & Zhou, Bo & Bhattarai, Rabin, 2019. "Composite fouling of drip emitters applying surface water with high sand concentration: Dynamic variation and formation mechanism," Agricultural Water Management, Elsevier, vol. 215(C), pages 25-43.
    2. Haseeb, A.S.M.A. & Masjuki, H.H. & Siang, C.T. & Fazal, M.A., 2010. "Compatibility of elastomers in palm biodiesel," Renewable Energy, Elsevier, vol. 35(10), pages 2356-2361.
    3. Zhou, Bo & Li, Yunkai & Song, Peng & Xu, Zhenci & Bralts, Vincent, 2016. "A kinetic model for biofilm growth inside non-PC emitters under reclaimed water drip irrigation," Agricultural Water Management, Elsevier, vol. 168(C), pages 23-34.
    4. Duran-Ros, Miquel & Puig-Bargués, Jaume & Cufí, Sílvia & Solé-Torres, Carles & Arbat, Gerard & Pujol, Joan & Ramírez de Cartagena, Francisco, 2022. "Effect of different filter media on emitter clogging using reclaimed effluents," Agricultural Water Management, Elsevier, vol. 266(C).
    5. Coelho, Rubens Duarte & Almeida, Alex Nunes de & Costa, Jéfferson de Oliveira & Pereira, Diego José de Sousa, 2022. "Mobile drip irrigation (MDI): Clogging of high flow emitters caused by dragging of driplines on the ground and by solid particles in the irrigation water," Agricultural Water Management, Elsevier, vol. 263(C).
    6. Li, Yunkai & Pan, Jiachong & Chen, Xiuzhi & Xue, Song & Feng, Ji & Muhammad, Tahir & Zhou, Bo, 2019. "Dynamic effects of chemical precipitates on drip irrigation system clogging using water with high sediment and salt loads," Agricultural Water Management, Elsevier, vol. 213(C), pages 833-842.
    7. Yao, Chunping & Zhang, Lin & Wu, Pute & Liu, Ying & Cai, Yaohui & Zhou, Wei, 2021. "Clogging formation and an anti-clogging method in subsurface irrigation system with porous ceramic emitter," Agricultural Water Management, Elsevier, vol. 250(C).
    8. Shen, Yan & Puig-Bargués, Jaume & Li, Mengyao & Xiao, Yang & Li, Qiang & Li, Yunkai, 2022. "Physical, chemical and biological emitter clogging behaviors in drip irrigation systems using high-sediment loaded water," Agricultural Water Management, Elsevier, vol. 270(C).
    9. Liu, Zeyuan & Xiao, Yang & Li, Yunkai & Zhou, Bo & Feng, Ji & Han, Siqi & Muhammad, Tahir, 2019. "Influence of operating pressure on emitter anti-clogging performance of drip irrigation system with high-sediment water," Agricultural Water Management, Elsevier, vol. 213(C), pages 174-184.
    10. Xiao, Yang & Ma, Changjian & Li, Mengyao & Zhangzhong, Lili & Song, Peng & Li, Yunkai, 2023. "Interaction and adaptation of phosphorus fertilizer and calcium ion in drip irrigation systems: the perspective of emitter clogging," Agricultural Water Management, Elsevier, vol. 282(C).
    11. Pedras, C.M.G. & Pereira, L.S., 2009. "Multicriteria analysis for design of microirrigation systems. Application and sensitivity analysis," Agricultural Water Management, Elsevier, vol. 96(4), pages 702-710, April.
    12. Yue Qin & Nathaniel D. Mueller & Stefan Siebert & Robert B. Jackson & Amir AghaKouchak & Julie B. Zimmerman & Dan Tong & Chaopeng Hong & Steven J. Davis, 2019. "Author Correction: Flexibility and intensity of global water use," Nature Sustainability, Nature, vol. 2(7), pages 643-643, July.
    13. Muhammad, Tahir & Zhou, Bo & Liu, Zeyuan & Chen, Xiuzhi & Li, Yunkai, 2021. "Effects of phosphorus-fertigation on emitter clogging in drip irrigation system with saline water," Agricultural Water Management, Elsevier, vol. 243(C).
    14. Yue Qin & Nathaniel D. Mueller & Stefan Siebert & Robert B. Jackson & Amir AghaKouchak & Julie B. Zimmerman & Dan Tong & Chaopeng Hong & Steven J. Davis, 2019. "Flexibility and intensity of global water use," Nature Sustainability, Nature, vol. 2(6), pages 515-523, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Peng & Liu, Lu & Tahir, Muhammad & Li, Yan & Wang, Xuejun & Shi, Ning & Xiao, Yang & Ma, Changjian & Li, Yunkai, 2024. "Effect of fertilization on emitter clogging in drip irrigation using high sediment water: Perspective of sediment discharge capacity," Agricultural Water Management, Elsevier, vol. 294(C).
    2. Hou, Peng & Xiao, Yang & Muhammad, Tahir & Zhou, Bo & Song, Peng & Zhou, Yunpeng & Han, Siqi & Wen, Jiaxin & Li, Yunkai, 2023. "Multi-factorial failure of pressure-compensating emitters in drip fertigation systems: An in-situ sampling investigation," Agricultural Water Management, Elsevier, vol. 275(C).
    3. Wang, Yayu & Xiao, Yang & Puig-Bargués, Jaume & Zhou, Bo & Liu, Zeyuan & Muhammad, Tahir & Liang, Hongbang & Maitusong, Memetmin & Wang, Zhenhua & Li, Yunkai, 2023. "Assessment of water quality ions in brackish water on drip irrigation system performance applied in saline areas," Agricultural Water Management, Elsevier, vol. 289(C).
    4. Ma, Changjian & Li, Mengyao & Hou, Peng & Wang, Xuejun & Sun, Zeqiang & Li, Yan & Xiao, Yang & Li, Yunkai, 2024. "Biofilm dynamic changes in drip irrigation emitter flow channels using reclaimed water," Agricultural Water Management, Elsevier, vol. 291(C).
    5. Liu, Zeyuan & Ma, Changjian & Xiao, Yang & Lili, Zhangzhong & Muhammad, Tahir & Li, Yunkai, 2023. "Application of chelated fertilizers to mitigate organic-inorganic fouling in brackish water drip irrigation systems," Agricultural Water Management, Elsevier, vol. 285(C).
    6. Shen, Yan & Puig-Bargués, Jaume & Li, Mengyao & Xiao, Yang & Li, Qiang & Li, Yunkai, 2022. "Physical, chemical and biological emitter clogging behaviors in drip irrigation systems using high-sediment loaded water," Agricultural Water Management, Elsevier, vol. 270(C).
    7. Wang, Yayu & Muhammad, Tahir & Liu, Zeyuan & Liang, Hongbang & Wang, Xingpeng & Wang, Zhenhua & Ma, Changjian & Li, Yunkai, 2022. "Chelated copper reduces yet manganese fertilizer increases calcium-silica fouling in brackish water drip irrigation systems," Agricultural Water Management, Elsevier, vol. 269(C).
    8. Yuan, Huabin & Wang, Yue & Sun, Zeqiang & Shi, Ning & Li, Bowen & Ma, Changjian & Xiao, Yang & Li, Quanqi & Li, Yunkai, 2023. "Increasing iron use efficiency by controlling emitter clogging in drip irrigation systems," Agricultural Water Management, Elsevier, vol. 290(C).
    9. Petit, Julien & García, Sílvia Mas & Molle, Bruno & Bendoula, Ryad & Ait-Mouheb, Nassim, 2022. "Methods for drip irrigation clogging detection, analysis and understanding: State of the art and perspectives," Agricultural Water Management, Elsevier, vol. 272(C).
    10. Wang, Yayu & Puig-Bargués, Jaume & Ma, Changjian & Xiao, Yang & Maitusong, Memetmin & Li, Yunkai, 2024. "Influence and selection of nitrogen and phosphorus compound fertilizers on emitter clogging using brackish water in drip irrigation systems," Agricultural Water Management, Elsevier, vol. 291(C).
    11. Liu, Zeyuan & Muhammad, Tahir & Puig-Bargués, Jaume & Han, Siqi & Ma, Yongjiu & Li, Yunkai, 2021. "Horizontal roughing filter for reducing emitter composite clogging in drip irrigation systems using high sediment water," Agricultural Water Management, Elsevier, vol. 258(C).
    12. Wang, Yayu & Muhammad, Tahir & Liu, Zeyuan & Ma, Changjian & Zhang, Changsheng & Wang, Zhenhua & He, Xin & Li, Yunkai, 2022. "Compounding with humic acid improved nutrient uniformity in drip fertigation system using brackish water: The perspective of emitter clogging," Agricultural Water Management, Elsevier, vol. 269(C).
    13. Muhammad, Tahir & Zhou, Bo & Puig-Bargu´es, Jaume & Ding, Can & Li, Shuqin & Manan, Irum & Zhou, Yunpeng & Liu, Zeyuan & Li, Yunkai, 2022. "Assessment of emitter clogging with multiple fouling and root intrusion in sub-surface drip irrigation during 5-year sugarcane growth," Agricultural Water Management, Elsevier, vol. 274(C).
    14. Lv, Chang & Niu, Wenquan & Du, Yadan & Sun, Jun & Dong, Aihong & Wu, Menglong & Mu, Fei & Zhu, Jinjin & Siddique, Kadambot H.M., 2024. "A meta-analysis of labyrinth channel emitter clogging characteristics under Yellow River water drip tape irrigation," Agricultural Water Management, Elsevier, vol. 291(C).
    15. Muniz, Gustavo L. & Camargo, Antonio P. & Signorelli, Filipe & Bertran, Celso A. & Pereira, Diego J.S. & Frizzone, José A., 2022. "Influence of suspended solid particles on calcium carbonate fouling in dripper labyrinths," Agricultural Water Management, Elsevier, vol. 273(C).
    16. Xiao, Yang & Ma, Changjian & Li, Mengyao & Zhangzhong, Lili & Song, Peng & Li, Yunkai, 2023. "Interaction and adaptation of phosphorus fertilizer and calcium ion in drip irrigation systems: the perspective of emitter clogging," Agricultural Water Management, Elsevier, vol. 282(C).
    17. Laluet, Pierre & Olivera-Guerra, Luis Enrique & Altés, Víctor & Paolini, Giovanni & Ouaadi, Nadia & Rivalland, Vincent & Jarlan, Lionel & Villar, Josep Maria & Merlin, Olivier, 2024. "Retrieving the irrigation actually applied at district scale: Assimilating high-resolution Sentinel-1-derived soil moisture data into a FAO-56-based model," Agricultural Water Management, Elsevier, vol. 293(C).
    18. Ma, Changjian & Jiang, Cuiling & Li, Yan & Shi, Ning & Liu, Shenglin & Hu, Xinhui & Liu, Zhaohui & Sun, Zeqiang & Muhammad, Tahir, 2024. "Effect of lateral flushing on emitter clogging in drip irrigation using high-sediment water," Agricultural Water Management, Elsevier, vol. 293(C).
    19. Rui Li & Qibiao Han & Conghui Dong & Xi Nan & Hao Li & Hao Sun & Hui Li & Peng Li & Yawei Hu, 2023. "Effect and Mechanism of Micro-Nano Aeration Treatment on a Drip Irrigation Emitter Based on Groundwater," Agriculture, MDPI, vol. 13(11), pages 1-17, October.
    20. Muhammad, Tahir & Zhou, Bo & Liu, Zeyuan & Chen, Xiuzhi & Li, Yunkai, 2021. "Effects of phosphorus-fertigation on emitter clogging in drip irrigation system with saline water," Agricultural Water Management, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:297:y:2024:i:c:s0378377424001707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.