IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i11p2059-d1268561.html
   My bibliography  Save this article

Effect and Mechanism of Micro-Nano Aeration Treatment on a Drip Irrigation Emitter Based on Groundwater

Author

Listed:
  • Rui Li

    (Henan Key Laboratory of Ecological Environment Protection and Restoration of Yellow River Basin, Zhengzhou 450003, China
    Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China)

  • Qibiao Han

    (Henan Key Laboratory of Ecological Environment Protection and Restoration of Yellow River Basin, Zhengzhou 450003, China
    Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China)

  • Conghui Dong

    (Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China)

  • Xi Nan

    (Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China)

  • Hao Li

    (Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China)

  • Hao Sun

    (Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China)

  • Hui Li

    (Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China)

  • Peng Li

    (Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China)

  • Yawei Hu

    (Henan Key Laboratory of Ecological Environment Protection and Restoration of Yellow River Basin, Zhengzhou 450003, China
    Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou 450003, China)

Abstract

The problem of emitter clogging has become the main obstacle restricting the application and promotion of drip irrigation technology. Studying the process of emitter clogging helps improve irrigation efficiency and save water resources. A large number of researchers have tried to solve the problem of emitter clogging from many perspectives. However, the influence of micro-nano bubbles as well as generated blockage on the clogging process of drip irrigation systems is less studied. Here, the influence of aeration on emitter clogging was studied by adding micro-nano bubbles to groundwater. Four different emitters were selected. Two treatments, micro-nano aeration and non-aeration, were set up, with a total of eight sets of experiments, running for 1500 h. The degree of emitter clogging was quantitatively characterized using the discharge ratio variation (Dra). The Christiansen uniformity coefficient ( Cu ) and statistical uniformity coefficient ( Us ) were used to evaluate the influence of emitter clogging on the performance of the drip irrigation system. Compared with the non-aeration treatment group, the Dra of aerated E1–E4 decreased by 64.74%, 54.22%, 64.20%, and 94.69% in 800 h, respectively. At the same time, the Us of the aerated E1–E4 decreased by 100%, 60.05%, 92.32%, and 100%, while the Cu of aerated E1–E4 decreased by 76.64%, 53.79%, 74.11%, and 100% compared with the unaerated group. The Cu and Us of all emitters under the aeration treatment were smaller than those comparison group. As for the blockage, the main components were typical physical blockage SiO 2 and chemical blockage CaCO 3 . Most of the blockages in the non-aeration treatment group are 5–10 μm in length, while those in the aerated treatment group were generally less than 5 μm. Aeration treatment made the blockage more broken and dense and more likely to accumulate in the flow channel, obstructing the flow of water and thus intensifying the clogging process. As a result, micro-nano aeration treatment increased the risk of emitter clogging, accelerated the development of blockage in the emitter, and disturbed the uniformity of the entire drip irrigation system. This study provides a reference idea for solving the problem of blockage in drip irrigation systems.

Suggested Citation

  • Rui Li & Qibiao Han & Conghui Dong & Xi Nan & Hao Li & Hao Sun & Hui Li & Peng Li & Yawei Hu, 2023. "Effect and Mechanism of Micro-Nano Aeration Treatment on a Drip Irrigation Emitter Based on Groundwater," Agriculture, MDPI, vol. 13(11), pages 1-17, October.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:11:p:2059-:d:1268561
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/11/2059/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/11/2059/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao, Yang & Ma, Changjian & Li, Mengyao & Zhangzhong, Lili & Song, Peng & Li, Yunkai, 2023. "Interaction and adaptation of phosphorus fertilizer and calcium ion in drip irrigation systems: the perspective of emitter clogging," Agricultural Water Management, Elsevier, vol. 282(C).
    2. Kaili Shi & Tiangang Lu & Wengang Zheng & Xin Zhang & Lili Zhangzhong, 2022. "A Review of the Category, Mechanism, and Controlling Methods of Chemical Clogging in Drip Irrigation System," Agriculture, MDPI, vol. 12(2), pages 1-20, January.
    3. Zhou, Yunpeng & Zhou, Bo & Xu, Feipeng & Muhammad, Tahir & Li, Yunkai, 2019. "Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. Liu, Zeyuan & Xiao, Yang & Li, Yunkai & Zhou, Bo & Feng, Ji & Han, Siqi & Muhammad, Tahir, 2019. "Influence of operating pressure on emitter anti-clogging performance of drip irrigation system with high-sediment water," Agricultural Water Management, Elsevier, vol. 213(C), pages 174-184.
    5. Capra, A. & Scicolone, B., 2004. "Emitter and filter tests for wastewater reuse by drip irrigation," Agricultural Water Management, Elsevier, vol. 68(2), pages 135-149, August.
    6. Han, Siqi & Li, Yunkai & Zhou, Bo & Liu, Zeyuan & Feng, Ji & Xiao, Yang, 2019. "An in-situ accelerated experimental testing method for drip irrigation emitter clogging with inferior water," Agricultural Water Management, Elsevier, vol. 212(C), pages 136-154.
    7. Pendergast, L. & Bhattarai, S.P. & Midmore, D.J., 2019. "Evaluation of aerated subsurface drip irrigation on yield, dry weight partitioning and water use efficiency of a broad-acre chickpea (Cicer arietinum, L.) in a vertosol," Agricultural Water Management, Elsevier, vol. 217(C), pages 38-46.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Li & Hao Li & Jinshan Li & Xiuqiao Huang & Yang Liu & Yue Jiang, 2022. "Effect of Aeration on Blockage Regularity and Microbial Diversity of Blockage Substance in Drip Irrigation Emitter," Agriculture, MDPI, vol. 12(11), pages 1-22, November.
    2. Wang, Yayu & Xiao, Yang & Puig-Bargués, Jaume & Zhou, Bo & Liu, Zeyuan & Muhammad, Tahir & Liang, Hongbang & Maitusong, Memetmin & Wang, Zhenhua & Li, Yunkai, 2023. "Assessment of water quality ions in brackish water on drip irrigation system performance applied in saline areas," Agricultural Water Management, Elsevier, vol. 289(C).
    3. Wang, Yayu & Muhammad, Tahir & Liu, Zeyuan & Liang, Hongbang & Wang, Xingpeng & Wang, Zhenhua & Ma, Changjian & Li, Yunkai, 2022. "Chelated copper reduces yet manganese fertilizer increases calcium-silica fouling in brackish water drip irrigation systems," Agricultural Water Management, Elsevier, vol. 269(C).
    4. Lv, Chang & Niu, Wenquan & Du, Yadan & Sun, Jun & Dong, Aihong & Wu, Menglong & Mu, Fei & Zhu, Jinjin & Siddique, Kadambot H.M., 2024. "A meta-analysis of labyrinth channel emitter clogging characteristics under Yellow River water drip tape irrigation," Agricultural Water Management, Elsevier, vol. 291(C).
    5. Wang, Yayu & Puig-Bargués, Jaume & Ma, Changjian & Xiao, Yang & Maitusong, Memetmin & Li, Yunkai, 2024. "Influence and selection of nitrogen and phosphorus compound fertilizers on emitter clogging using brackish water in drip irrigation systems," Agricultural Water Management, Elsevier, vol. 291(C).
    6. Zhu, Jinjin & Niu, Wenquan & Zhang, Zhenhua & Siddique, Kadambot H.M. & Dan Sun, & Yang, Runya, 2022. "Distinct roles for soil bacterial and fungal communities associated with the availability of carbon and phosphorus under aerated drip irrigation," Agricultural Water Management, Elsevier, vol. 274(C).
    7. Ma, Changjian & Jiang, Cuiling & Li, Yan & Shi, Ning & Liu, Shenglin & Hu, Xinhui & Liu, Zhaohui & Sun, Zeqiang & Muhammad, Tahir, 2024. "Effect of lateral flushing on emitter clogging in drip irrigation using high-sediment water," Agricultural Water Management, Elsevier, vol. 293(C).
    8. Yuan Li & Zhenxing Zhang & Jingwei Wang & Mingzhi Zhang, 2022. "Soil Aeration and Plastic Film Mulching Increase the Yield Potential and Quality of Tomato ( Solanum lycopersicum )," Agriculture, MDPI, vol. 12(2), pages 1-16, February.
    9. Hou, Peng & Liu, Lu & Tahir, Muhammad & Li, Yan & Wang, Xuejun & Shi, Ning & Xiao, Yang & Ma, Changjian & Li, Yunkai, 2024. "Effect of fertilization on emitter clogging in drip irrigation using high sediment water: Perspective of sediment discharge capacity," Agricultural Water Management, Elsevier, vol. 294(C).
    10. Hou, Peng & Ma, Changjian & Wang, Jia & Li, Yan & Zhang, Kai & Hou, Shance & Li, Jingzhi & Sun, Zeqiang & Xiao, Yang & Li, Yunkai, 2024. "Failure behavior of pressure compensating emitter under different operation pressures in drip irrigation systems," Agricultural Water Management, Elsevier, vol. 297(C).
    11. Arbat, G. & Pujol, T. & Puig-Bargués, J. & Duran-Ros, M. & Montoro, L. & Barragán, J. & Ramírez de Cartagena, F., 2013. "An experimental and analytical study to analyze hydraulic behavior of nozzle-type underdrains in porous media filters," Agricultural Water Management, Elsevier, vol. 126(C), pages 64-74.
    12. Deepak Singh & Neelam Patel & Agossou Gadedjisso-Tossou & Sridhar Patra & Nisha Singh & Pushpendra Kumar Singh, 2020. "Incidence of Escherichia coli in Vegetable Crops and Soil Profile Drip Irrigated with Primarily Treated Municipal Wastewater in a Semi-Arid Peri Urban Area," Agriculture, MDPI, vol. 10(7), pages 1-17, July.
    13. Yuan, Huabin & Wang, Yue & Sun, Zeqiang & Shi, Ning & Li, Bowen & Ma, Changjian & Xiao, Yang & Li, Quanqi & Li, Yunkai, 2023. "Increasing iron use efficiency by controlling emitter clogging in drip irrigation systems," Agricultural Water Management, Elsevier, vol. 290(C).
    14. Liu, Haijun & Huang, Guanhua, 2009. "Laboratory experiment on drip emitter clogging with fresh water and treated sewage effluent," Agricultural Water Management, Elsevier, vol. 96(5), pages 745-756, May.
    15. Puig-Bargues, J. & Arbat, G. & Barragan, J. & Ramirez de Cartagena, F., 2005. "Hydraulic performance of drip irrigation subunits using WWTP effluents," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 249-262, August.
    16. Oliver, M.M.H. & Hewa, G.A. & Pezzaniti, D., 2014. "Bio-fouling of subsurface type drip emitters applying reclaimed water under medium soil thermal variation," Agricultural Water Management, Elsevier, vol. 133(C), pages 12-23.
    17. Chen, Peng & Xu, Junzeng & Zhang, Zhongxue & Nie, Tangzhe & Wang, Kechun & Guo, Hang, 2022. "Where the straw-derived nitrogen gone in paddy field subjected to different irrigation regimes and straw placement depths? Evidence from 15N labeling," Agricultural Water Management, Elsevier, vol. 273(C).
    18. Ma, Changjian & Li, Mengyao & Hou, Peng & Wang, Xuejun & Sun, Zeqiang & Li, Yan & Xiao, Yang & Li, Yunkai, 2024. "Biofilm dynamic changes in drip irrigation emitter flow channels using reclaimed water," Agricultural Water Management, Elsevier, vol. 291(C).
    19. Zhou, Yunpeng & Zhou, Bo & Xu, Feipeng & Muhammad, Tahir & Li, Yunkai, 2019. "Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    20. do Amaral, Marcos Antonio Correa Matos & Coelho, Rubens Duarte & de Oliveira Costa, Jéfferson & de Sousa Pereira, Diego José & de Camargo, Antonio Pires, 2022. "Dripper clogging by soil particles entering lateral lines directly during irrigation network assembly in the field," Agricultural Water Management, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:11:p:2059-:d:1268561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.