IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v223y2019ic25.html
   My bibliography  Save this article

Effect of different sand filter underdrain designs on emitter clogging using reclaimed effluents

Author

Listed:
  • Solé-Torres, Carles
  • Puig-Bargués, Jaume
  • Duran-Ros, Miquel
  • Arbat, Gerard
  • Pujol, Joan
  • Ramírez de Cartagena, Francisco

Abstract

Sand media filters are those that achieve a higher retention of organic and inorganic solids, which is why they are usually recommended when reclaimed effluents are used in drip irrigation systems. Sand filters usually differ on the design of their underdrain, where an important pressure drop is produced. However, the effect of the design of sand filter underdrain on emitter clogging has not been widely studied. Three sand media filters with different underdrain designs (collector arms, inserted domes and drainage with porous media) were used for filtering a reclaimed effluent in a surface drip irrigation system. Pressure-compensating emitters with 2.3 l/h nominal emitter discharge were placed every 40 cm in 4 irrigation laterals each measuring 90 m in length. Effluents were chlorinated after being filtered. The filters operated for 1000 h with sand media heights of 20 and 30 cm and filtration velocities of 30 and 60 m/h. At the beginning, after 500 h, and at the end of the experiment the emitter discharge of each one of the 2712 emitters that were installed was experimentally measured under field conditions. On average, there was a statistically significant reduction (p < 0.05) on emitter discharge regarding the initial value of 8.03% at 500 h and 10.84% at 1000 h. Emitter clogging was primarily affected by the interactions between underdrain design, emitter location and irrigation time. Differences on emitter discharge due to underdrain design were only observed at 1000 h, showing a significantly higher flow rate (p < 0.05) those emitters protected with the filter with a collector arm underdrain, despite the fact that this filter did not achieve the highest turbidity removals. Emitter location had also a significant effect after 500 h of operation, being discharge significantly lower (p < 0.05) only in the last 2 m of the laterals, with the minimum values found for the final two drippers. The three filters used in the experiment did not show a significant effect on the percentage of completely clogged emitters, which mainly depended on the interaction between irrigation time and emitter location.

Suggested Citation

  • Solé-Torres, Carles & Puig-Bargués, Jaume & Duran-Ros, Miquel & Arbat, Gerard & Pujol, Joan & Ramírez de Cartagena, Francisco, 2019. "Effect of different sand filter underdrain designs on emitter clogging using reclaimed effluents," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
  • Handle: RePEc:eee:agiwat:v:223:y:2019:i:c:25
    DOI: 10.1016/j.agwat.2019.105683
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419303531
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Peng & Li, Yunkai & Zhou, Bo & Zhou, Chunfa & Zhang, Zhijing & Li, Jiusheng, 2017. "Controlling mechanism of chlorination on emitter bio-clogging for drip irrigation using reclaimed water," Agricultural Water Management, Elsevier, vol. 184(C), pages 36-45.
    2. Oliver, M.M.H. & Hewa, G.A. & Pezzaniti, D., 2014. "Bio-fouling of subsurface type drip emitters applying reclaimed water under medium soil thermal variation," Agricultural Water Management, Elsevier, vol. 133(C), pages 12-23.
    3. Arbat, G. & Pujol, T. & Puig-Bargués, J. & Duran-Ros, M. & Montoro, L. & Barragán, J. & Ramírez de Cartagena, F., 2013. "An experimental and analytical study to analyze hydraulic behavior of nozzle-type underdrains in porous media filters," Agricultural Water Management, Elsevier, vol. 126(C), pages 64-74.
    4. Duran-Ros, M. & Puig-Bargués, J. & Arbat, G. & Barragán, J. & Cartagena, F. Ramírez de, 2009. "Effect of filter, emitter and location on clogging when using effluents," Agricultural Water Management, Elsevier, vol. 96(1), pages 67-79, January.
    5. Puig-Bargués, J. & Arbat, G. & Elbana, M. & Duran-Ros, M. & Barragán, J. & de Cartagena, F. Ramírez & Lamm, F.R., 2010. "Effect of flushing frequency on emitter clogging in microirrigation with effluents," Agricultural Water Management, Elsevier, vol. 97(6), pages 883-891, June.
    6. Mesquita, M. & Testezlaf, R. & Ramirez, J.C.S., 2012. "The effect of media bed characteristics and internal auxiliary elements on sand filter head loss," Agricultural Water Management, Elsevier, vol. 115(C), pages 178-185.
    7. Bové, Josep & Puig-Bargués, Jaume & Arbat, Gerard & Duran-Ros, Miquel & Pujol, Toni & Pujol, Joan & Ramírez de Cartagena, Francisco, 2017. "Development of a new underdrain for improving the efficiency of microirrigation sand media filters," Agricultural Water Management, Elsevier, vol. 179(C), pages 296-305.
    8. Maestre-Valero, J.F. & Martínez-Alvarez, V., 2010. "Effects of drip irrigation systems on the recovery of dissolved oxygen from hypoxic water," Agricultural Water Management, Elsevier, vol. 97(11), pages 1806-1812, November.
    9. Capra, A. & Scicolone, B., 2004. "Emitter and filter tests for wastewater reuse by drip irrigation," Agricultural Water Management, Elsevier, vol. 68(2), pages 135-149, August.
    10. Bucks, D. A. & Nakayama, F. S. & Gilbert, R. G., 1979. "Trickle irrigation water quality and preventive maintenance," Agricultural Water Management, Elsevier, vol. 2(2), pages 149-162, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. do Amaral, Marcos Antonio Correa Matos & Coelho, Rubens Duarte & de Oliveira Costa, Jéfferson & de Sousa Pereira, Diego José & de Camargo, Antonio Pires, 2022. "Dripper clogging by soil particles entering lateral lines directly during irrigation network assembly in the field," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Ma, Changjian & Li, Mengyao & Hou, Peng & Wang, Xuejun & Sun, Zeqiang & Li, Yan & Xiao, Yang & Li, Yunkai, 2024. "Biofilm dynamic changes in drip irrigation emitter flow channels using reclaimed water," Agricultural Water Management, Elsevier, vol. 291(C).
    3. Duran-Ros, Miquel & Puig-Bargués, Jaume & Cufí, Sílvia & Solé-Torres, Carles & Arbat, Gerard & Pujol, Joan & Ramírez de Cartagena, Francisco, 2022. "Effect of different filter media on emitter clogging using reclaimed effluents," Agricultural Water Management, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duran-Ros, Miquel & Puig-Bargués, Jaume & Cufí, Sílvia & Solé-Torres, Carles & Arbat, Gerard & Pujol, Joan & Ramírez de Cartagena, Francisco, 2022. "Effect of different filter media on emitter clogging using reclaimed effluents," Agricultural Water Management, Elsevier, vol. 266(C).
    2. Han, Siqi & Li, Yunkai & Zhou, Bo & Liu, Zeyuan & Feng, Ji & Xiao, Yang, 2019. "An in-situ accelerated experimental testing method for drip irrigation emitter clogging with inferior water," Agricultural Water Management, Elsevier, vol. 212(C), pages 136-154.
    3. Joan Pujol & Francesc X. Espinach & Miquel Duran-Ros & Gerard Arbat & Toni Pujol & Francisco Ramírez de Cartagena & Jaume Puig-Bargués, 2022. "Environmental Assessment of Underdrain Designs for Granular Media Filters in Drip Irrigation Systems," Agriculture, MDPI, vol. 12(6), pages 1-14, June.
    4. Arbat, G. & Pujol, T. & Puig-Bargués, J. & Duran-Ros, M. & Montoro, L. & Barragán, J. & Ramírez de Cartagena, F., 2013. "An experimental and analytical study to analyze hydraulic behavior of nozzle-type underdrains in porous media filters," Agricultural Water Management, Elsevier, vol. 126(C), pages 64-74.
    5. Petit, Julien & García, Sílvia Mas & Molle, Bruno & Bendoula, Ryad & Ait-Mouheb, Nassim, 2022. "Methods for drip irrigation clogging detection, analysis and understanding: State of the art and perspectives," Agricultural Water Management, Elsevier, vol. 272(C).
    6. Oliver, M.M.H. & Hewa, G.A. & Pezzaniti, D., 2014. "Bio-fouling of subsurface type drip emitters applying reclaimed water under medium soil thermal variation," Agricultural Water Management, Elsevier, vol. 133(C), pages 12-23.
    7. Bové, Josep & Puig-Bargués, Jaume & Arbat, Gerard & Duran-Ros, Miquel & Pujol, Toni & Pujol, Joan & Ramírez de Cartagena, Francisco, 2017. "Development of a new underdrain for improving the efficiency of microirrigation sand media filters," Agricultural Water Management, Elsevier, vol. 179(C), pages 296-305.
    8. do Amaral, Marcos Antonio Correa Matos & Coelho, Rubens Duarte & de Oliveira Costa, Jéfferson & de Sousa Pereira, Diego José & de Camargo, Antonio Pires, 2022. "Dripper clogging by soil particles entering lateral lines directly during irrigation network assembly in the field," Agricultural Water Management, Elsevier, vol. 273(C).
    9. Miquel Duran-Ros & Joan Pujol & Toni Pujol & Sílvia Cufí & Gerard Arbat & Francisco Ramírez de Cartagena & Jaume Puig-Bargués, 2023. "Solid Removal across the Bed Depth in Media Filters for Drip Irrigation Systems," Agriculture, MDPI, vol. 13(2), pages 1-14, February.
    10. Muhammad, Tahir & Zhou, Bo & Puig-Bargu´es, Jaume & Ding, Can & Li, Shuqin & Manan, Irum & Zhou, Yunpeng & Liu, Zeyuan & Li, Yunkai, 2022. "Assessment of emitter clogging with multiple fouling and root intrusion in sub-surface drip irrigation during 5-year sugarcane growth," Agricultural Water Management, Elsevier, vol. 274(C).
    11. Puig-Bargués, J. & Arbat, G. & Elbana, M. & Duran-Ros, M. & Barragán, J. & de Cartagena, F. Ramírez & Lamm, F.R., 2010. "Effect of flushing frequency on emitter clogging in microirrigation with effluents," Agricultural Water Management, Elsevier, vol. 97(6), pages 883-891, June.
    12. Zhou, Bo & Li, Yunkai & Xue, Song & Feng, Ji, 2019. "Variation of microorganisms in drip irrigation systems using high-sand surface water," Agricultural Water Management, Elsevier, vol. 218(C), pages 37-47.
    13. Liu, Haijun & Huang, Guanhua, 2009. "Laboratory experiment on drip emitter clogging with fresh water and treated sewage effluent," Agricultural Water Management, Elsevier, vol. 96(5), pages 745-756, May.
    14. Puig-Bargues, J. & Arbat, G. & Barragan, J. & Ramirez de Cartagena, F., 2005. "Hydraulic performance of drip irrigation subunits using WWTP effluents," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 249-262, August.
    15. Zhou, Bo & Zhou, Hongxu & Puig-Bargués, Jaume & Li, Yunkai, 2019. "Using an anti-clogging relative index (CRI) to assess emitters rapidly for drip irrigation systems with multiple low-quality water sources," Agricultural Water Management, Elsevier, vol. 221(C), pages 270-278.
    16. Zhou, Bo & Li, Yunkai & Song, Peng & Xu, Zhenci & Bralts, Vincent, 2016. "A kinetic model for biofilm growth inside non-PC emitters under reclaimed water drip irrigation," Agricultural Water Management, Elsevier, vol. 168(C), pages 23-34.
    17. Miquel Duran-Ros & Joan Pujol & Toni Pujol & Sílvia Cufí & Jonathan Graciano-Uribe & Gerard Arbat & Francisco Ramírez de Cartagena & Jaume Puig-Bargués, 2024. "Efficiency of Backwashing in Removing Solids from Sand Media Filters for Drip Irrigation Systems," Agriculture, MDPI, vol. 14(9), pages 1-14, September.
    18. Song, Peng & Li, Yunkai & Zhou, Bo & Zhou, Chunfa & Zhang, Zhijing & Li, Jiusheng, 2017. "Controlling mechanism of chlorination on emitter bio-clogging for drip irrigation using reclaimed water," Agricultural Water Management, Elsevier, vol. 184(C), pages 36-45.
    19. Shen, Yan & Puig-Bargués, Jaume & Li, Mengyao & Xiao, Yang & Li, Qiang & Li, Yunkai, 2022. "Physical, chemical and biological emitter clogging behaviors in drip irrigation systems using high-sediment loaded water," Agricultural Water Management, Elsevier, vol. 270(C).
    20. Ma, Changjian & Jiang, Cuiling & Li, Yan & Shi, Ning & Liu, Shenglin & Hu, Xinhui & Liu, Zhaohui & Sun, Zeqiang & Muhammad, Tahir, 2024. "Effect of lateral flushing on emitter clogging in drip irrigation using high-sediment water," Agricultural Water Management, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:223:y:2019:i:c:25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.