IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2024-02-1.html
   My bibliography  Save this article

Implications of Machine Learning in the Generation of Renewable Energies in Latin America from a Globalized Vision: A Systematic Review

Author

Listed:
  • Hugo Gaspar Hernandez-Palma

    (Faculty of Engineering, Ibero-American University Corporation, Calle 67#5-27, Bogotá, Colombia; & Faculty of Engineering, EAN University, Av. Chile: Calle 71 # 9-84, Bogota Colombia)

  • Jonny Rafael Plaza Alvarado

    (Faculty of Engineering, EAN University, Av. Chile: Calle 71 # 9-84, Bogota Colombia)

  • Jesús Enrique García Guiliany

    (Corporación Universitaria Latinoamericana, Calle 58 # 55 - 24A, Barranquilla, Colombia)

  • Guilherme Luiz Dotto

    (Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000–7, 97105–900 Santa Maria, RS, Brazil)

  • Claudete Gindri Ramos

    (Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002, Barranquilla, Atlántico, Colombia)

Abstract

The global energy industry fundamentally transformed towards renewable energy sources, driven by the sustainability paradigm. This shift was crucial in addressing the challenges of climate change and resource scarcity. Machine Learning (ML) played a pivotal role in enhancing the efficiency and reliability of renewable energy systems. This study conducted a comprehensive analysis of scientific production at the intersection of ML and renewable energy generation, focusing on Latin America. Employing a methodology based on documentary research and bibliometric processes, utilizing the Scopus database with the support of R and VOSviewer software, our research revealed a significant increase in interest and investment in research related to ML and renewable energies since 2020. This exponential growth scenario in this knowledge area had significant implications for Latin America and the world, fostering technological advancements and the adoption of renewable energies. Countries such as China, India, the United States, South Korea, and Saudi Arabia represented 61% of the global scientific production in this field, underscoring its global relevance. This growth indicated a growing interest and investment in ML applications in renewable energies, aligning with the 2030 Agenda for Sustainable Development. This research aligns with the Sustainable Development Goals (SDGs), particularly SDG 7 (Affordable and Clean Energy) and SDG 9 (Industry, Innovation, and Infrastructure). It contributed to progress toward a more sustainable future, benefiting society through more efficient and sustainable energy systems, the energy industry through increased innovation and the adoption of clean technologies, and Latin America, which could leverage these findings to sustainably drive its economic and environmental development.

Suggested Citation

  • Hugo Gaspar Hernandez-Palma & Jonny Rafael Plaza Alvarado & Jesús Enrique García Guiliany & Guilherme Luiz Dotto & Claudete Gindri Ramos, 2024. "Implications of Machine Learning in the Generation of Renewable Energies in Latin America from a Globalized Vision: A Systematic Review," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 1-10, March.
  • Handle: RePEc:eco:journ2:2024-02-1
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/15301/7788
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/15301
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Assouline, Dan & Mohajeri, Nahid & Scartezzini, Jean-Louis, 2018. "Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests," Applied Energy, Elsevier, vol. 217(C), pages 189-211.
    2. Shi, Zhongtuo & Yao, Wei & Li, Zhouping & Zeng, Lingkang & Zhao, Yifan & Zhang, Runfeng & Tang, Yong & Wen, Jinyu, 2020. "Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions," Applied Energy, Elsevier, vol. 278(C).
    3. Li, Jiaming & Ward, John K. & Tong, Jingnan & Collins, Lyle & Platt, Glenn, 2016. "Machine learning for solar irradiance forecasting of photovoltaic system," Renewable Energy, Elsevier, vol. 90(C), pages 542-553.
    4. Shrivastava, Nitin Anand & Lohia, Kunal & Panigrahi, Bijaya Ketan, 2016. "A multiobjective framework for wind speed prediction interval forecasts," Renewable Energy, Elsevier, vol. 87(P2), pages 903-910.
    5. Dmitriy Li & Jeong Hwan Bae & Meenakshi Rishi, 2023. "Sustainable Development and SDG-7 in Sub-Saharan Africa: Balancing Energy Access, Economic Growth, and Carbon Emissions," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 35(1), pages 112-137, February.
    6. Evaristo Navarro Manotas & Remedios Pitre Redondo & Janeka L pez Contreras & Meredith Jim nez Cardenas & Hugo Hernandez Palma, 2021. "Renewable Energies and their Advantages for the Sustainability of Companies in the Health Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 531-537.
    7. Abdulelah Alkesaiberi & Fouzi Harrou & Ying Sun, 2022. "Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study," Energies, MDPI, vol. 15(7), pages 1-24, March.
    8. Gabriel de Freitas Viscondi & Solange N. Alves-Souza, 2021. "Solar Irradiance Prediction with Machine Learning Algorithms: A Brazilian Case Study on Photovoltaic Electricity Generation," Energies, MDPI, vol. 14(18), pages 1-15, September.
    9. Arévalo, Paul & Benavides, Dario & Tostado-Véliz, Marcos & Aguado, José A. & Jurado, Francisco, 2023. "Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques," Renewable Energy, Elsevier, vol. 205(C), pages 366-383.
    10. Elmaz, Furkan & Yücel, Özgün & Mutlu, Ali Yener, 2020. "Predictive modeling of biomass gasification with machine learning-based regression methods," Energy, Elsevier, vol. 191(C).
    11. Carneiro, Tatiane C. & Rocha, Paulo A.C. & Carvalho, Paulo C.M. & Fernández-Ramírez, Luis M., 2022. "Ridge regression ensemble of machine learning models applied to solar and wind forecasting in Brazil and Spain," Applied Energy, Elsevier, vol. 314(C).
    12. Eduardo Machado & Tiago Pinto & Vanessa Guedes & Hugo Morais, 2021. "Electrical Load Demand Forecasting Using Feed-Forward Neural Networks," Energies, MDPI, vol. 14(22), pages 1-24, November.
    13. Rosero, D.G. & Díaz, N.L. & Trujillo, C.L., 2021. "Cloud and machine learning experiments applied to the energy management in a microgrid cluster," Applied Energy, Elsevier, vol. 304(C).
    14. Bogdan Bochenek & Jakub Jurasz & Adam Jaczewski & Gabriel Stachura & Piotr Sekuła & Tomasz Strzyżewski & Marcin Wdowikowski & Mariusz Figurski, 2021. "Day-Ahead Wind Power Forecasting in Poland Based on Numerical Weather Prediction," Energies, MDPI, vol. 14(8), pages 1-18, April.
    15. Upma Singh & Mohammad Rizwan & Muhannad Alaraj & Ibrahim Alsaidan, 2021. "A Machine Learning-Based Gradient Boosting Regression Approach for Wind Power Production Forecasting: A Step towards Smart Grid Environments," Energies, MDPI, vol. 14(16), pages 1-21, August.
    16. Josephine M. Chambers & Carina Wyborn & Melanie E. Ryan & Robin S. Reid & Maraja Riechers & Anca Serban & Nathan J. Bennett & Christopher Cvitanovic & María E. Fernández-Giménez & Kathleen A. Galvin &, 2021. "Six modes of co-production for sustainability," Nature Sustainability, Nature, vol. 4(11), pages 983-996, November.
    17. Muhammad Aslam & Jae-Myeong Lee & Hyung-Seung Kim & Seung-Jae Lee & Sugwon Hong, 2019. "Deep Learning Models for Long-Term Solar Radiation Forecasting Considering Microgrid Installation: A Comparative Study," Energies, MDPI, vol. 13(1), pages 1-15, December.
    18. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms," Applied Energy, Elsevier, vol. 316(C).
    19. Gabriel Mendonça de Paiva & Sergio Pires Pimentel & Bernardo Pinheiro Alvarenga & Enes Gonçalves Marra & Marco Mussetta & Sonia Leva, 2020. "Multiple Site Intraday Solar Irradiance Forecasting by Machine Learning Algorithms: MGGP and MLP Neural Networks," Energies, MDPI, vol. 13(11), pages 1-28, June.
    20. Alabi, Tobi Michael & Aghimien, Emmanuel I. & Agbajor, Favour D. & Yang, Zaiyue & Lu, Lin & Adeoye, Adebusola R. & Gopaluni, Bhushan, 2022. "A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems," Renewable Energy, Elsevier, vol. 194(C), pages 822-849.
    21. Bortoluzzi, Mirian & Furlan, Marcelo & dos Reis Neto, José Francisco, 2022. "Assessing the impact of hydropower projects in Brazil through data envelopment analysis and machine learning," Renewable Energy, Elsevier, vol. 200(C), pages 1316-1326.
    22. Rodrigo Barbosa de Santis & Marcelo Azevedo Costa, 2020. "Extended Isolation Forests for Fault Detection in Small Hydroelectric Plants," Sustainability, MDPI, vol. 12(16), pages 1-16, August.
    23. Sujan Ghimire & Ravinesh C. Deo & Hua Wang & Mohanad S. Al-Musaylh & David Casillas-Pérez & Sancho Salcedo-Sanz, 2022. "Stacked LSTM Sequence-to-Sequence Autoencoder with Feature Selection for Daily Solar Radiation Prediction: A Review and New Modeling Results," Energies, MDPI, vol. 15(3), pages 1-39, January.
    24. Victor Hugo Wentz & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models," Energies, MDPI, vol. 15(7), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao-Ming Huang & Shin-Ju Chen & Sung-Pei Yang & Hsin-Jen Chen, 2023. "One-Day-Ahead Hourly Wind Power Forecasting Using Optimized Ensemble Prediction Methods," Energies, MDPI, vol. 16(6), pages 1-22, March.
    2. Ghimire, Sujan & Nguyen-Huy, Thong & AL-Musaylh, Mohanad S. & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2023. "A novel approach based on integration of convolutional neural networks and echo state network for daily electricity demand prediction," Energy, Elsevier, vol. 275(C).
    3. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2024. "Two-step deep learning framework with error compensation technique for short-term, half-hourly electricity price forecasting," Applied Energy, Elsevier, vol. 353(PA).
    4. Alabi, Tobi Michael & Lu, Lin & Yang, Zaiyue, 2024. "Real-time automatic control of multi-energy system for smart district community: A coupling ensemble prediction model and safe deep reinforcement learning," Energy, Elsevier, vol. 304(C).
    5. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2023. "Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches," Applied Energy, Elsevier, vol. 339(C).
    6. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    7. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    8. Konduru Sudharshan & C. Naveen & Pradeep Vishnuram & Damodhara Venkata Siva Krishna Rao Kasagani & Benedetto Nastasi, 2022. "Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction," Energies, MDPI, vol. 15(17), pages 1-39, August.
    9. Bangjian Wang & Lihua Xu & Tianze Chen & Bowen Hou & Jianxun Liu & Yijun Shen & Rao Kuang, 2024. "High-Temperature Mechanical Properties of Basalt Fibers: A Step Towards Fire-Safe Materials for Photovoltaic Applications," Sustainability, MDPI, vol. 16(24), pages 1-13, December.
    10. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    11. Li, Shuguang & Leng, Yuchi & Chaturvedi, Rishabh & Dutta, Ashit Kumar & Abdullaeva, Barno Sayfutdinovna & Fouad, Yasser, 2024. "Sustainable freshwater/energy supply through geothermal-centered layout tailored with humidification-dehumidification desalination unit; Optimized by regression machine learning techniques," Energy, Elsevier, vol. 303(C).
    12. Prince Waqas Khan & Yung-Cheol Byun & Sang-Joon Lee & Dong-Ho Kang & Jin-Young Kang & Hae-Su Park, 2020. "Machine Learning-Based Approach to Predict Energy Consumption of Renewable and Nonrenewable Power Sources," Energies, MDPI, vol. 13(18), pages 1-16, September.
    13. Jimmy Gallegos & Paul Arévalo & Christian Montaleza & Francisco Jurado, 2024. "Sustainable Electrification—Advances and Challenges in Electrical-Distribution Networks: A Review," Sustainability, MDPI, vol. 16(2), pages 1-33, January.
    14. Periklis Gogas & Theophilos Papadimitriou, 2023. "Machine Learning in Renewable Energy," Energies, MDPI, vol. 16(5), pages 1-3, February.
    15. Mojtaba Qolipour & Ali Mostafaeipour & Mohammad Saidi-Mehrabad & Hamid R Arabnia, 2019. "Prediction of wind speed using a new Grey-extreme learning machine hybrid algorithm: A case study," Energy & Environment, , vol. 30(1), pages 44-62, February.
    16. Javier López Gómez & Ana Ogando Martínez & Francisco Troncoso Pastoriza & Lara Febrero Garrido & Enrique Granada Álvarez & José Antonio Orosa García, 2020. "Photovoltaic Power Prediction Using Artificial Neural Networks and Numerical Weather Data," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    17. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    18. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    19. Zoltan Varga & Ervin Racz, 2022. "Machine Learning Analysis on the Performance of Dye-Sensitized Solar Cell—Thermoelectric Generator Hybrid System," Energies, MDPI, vol. 15(19), pages 1-18, October.
    20. Sibtain, Muhammad & Li, Xianshan & Saleem, Snoober & Ain, Qurat-ul- & Shi, Qiang & Li, Fei & Saeed, Muhammad & Majeed, Fatima & Shah, Syed Shoaib Ahmed & Saeed, Muhammad Hammad, 2022. "Multifaceted irradiance prediction by exploiting hybrid decomposition-entropy-Spatiotemporal attention based Sequence2Sequence models," Renewable Energy, Elsevier, vol. 196(C), pages 648-682.

    More about this item

    Keywords

    Machine Learning; Power Generation; Renewable Energies;
    All these keywords.

    JEL classification:

    • A30 - General Economics and Teaching - - Multisubject Collective Works - - - General
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2024-02-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.