IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924021469.html
   My bibliography  Save this article

Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts

Author

Listed:
  • Ghimire, Sujan
  • AL-Musaylh, Mohanad S.
  • Nguyen-Huy, Thong
  • Deo, Ravinesh C.
  • Acharya, Rajendra
  • Casillas-Pérez, David
  • Yaseen, Zaher Mundher
  • Salcedo-Sanz, Sancho

Abstract

Electricity consumption has stochastic variabilities driven by the energy market volatility. The capability to predict electricity demand that captures stochastic variances and uncertainties is significantly important in the planning, operation and regulation of national electricity markets. This study has proposed an explainable deeply-fused nets electricity demand prediction model that factors in the climate-based predictors for enhanced accuracy and energy market insight analysis, generating point-based and confidence interval predictions of daily electricity demand. The proposed hybrid approach is built using Deeply Fused Nets (FNET) that comprises of Convolutional Neural Network (CNN) and Bidirectional Long-Short Term Memory (BILSTM) Network with residual connection. The study then contributes to a new deep fusion model that integrates intermediate representations of the base networks (fused output being the input of the remaining part of each base network) to perform these combinations deeply over several intermediate representations to enhance the demand predictions. The results are evaluated with statistical metrics and graphical representations of predicted and observed electricity demand, benchmarked with standalone models i.e., BILSTM, LSTMCNN, deep neural network, multi-layer perceptron, multivariate adaptive regression spline, kernel ridge regression and Gaussian process of regression. The end part of the proposed FNET model applies residual bootstrapping where final residuals are computed from predicted and observed demand to generate the 95% prediction intervals, analysed using probabilistic metrics to quantify the uncertainty associated with FNETS objective model. To enhance the FNET model’s transparency, the SHapley Additive explanation (SHAP) method has been applied to elucidate the relationships between electricity demand and climate-based predictor variables. The suggested model analysis reveals that the preceding hour’s electricity demand and evapotranspiration were the most influential factors that positively impacting current electricity demand. These findings underscore the FNET model’s capacity to yield accurate and insightful predictions, advocating its utility in predicting electricity demand and analysis of energy markets for decision-making.

Suggested Citation

  • Ghimire, Sujan & AL-Musaylh, Mohanad S. & Nguyen-Huy, Thong & Deo, Ravinesh C. & Acharya, Rajendra & Casillas-Pérez, David & Yaseen, Zaher Mundher & Salcedo-Sanz, Sancho, 2025. "Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021469
    DOI: 10.1016/j.apenergy.2024.124763
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924021469
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124763?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.