IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v278y2020ics0306261920312228.html
   My bibliography  Save this article

Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions

Author

Listed:
  • Shi, Zhongtuo
  • Yao, Wei
  • Li, Zhouping
  • Zeng, Lingkang
  • Zhao, Yifan
  • Zhang, Runfeng
  • Tang, Yong
  • Wen, Jinyu

Abstract

Smart grid is the new trend for clean, sustainable, efficient and reliable energy generation, delivery and use. To ensure stable and secure operation is essential for the smart grid, which needs effective stability analysis and control. As the smart grid has evolved through a growing scale of interconnection, increasing integration of renewable energy, widespread operation of direct current power transmission systems, and liberalization of electricity markets, the stability characteristics of it are much more complex than the past. Due to these changes, conventional stability analysis and control approaches have a series of drawbacks in terms of speed, effectiveness and economy. On the contrary, the emerging artificial intelligence (AI) techniques provide powerful and promising tools for stability analysis and control in smart grids and have attracted growing attention. This paper aims to give a comprehensive and clear picture of recent advances in this research area. First, we present a general overview of AI, including its definitions, history and state-of-the-art methodologies. And then, this paper gives a comprehensive review of its applications to security assessment, stability assessment, fault diagnosis, and stability control in smart grids. These applications have achieved impressive results. Nevertheless, we also identify some major challenges these applications face in practice: high requirements on data, imbalanced learning, interpretability of AI, difficulties in transfer learning, the robustness of AI to communication quality, and the robustness against attack or adversarial examples. Furthermore, we provide suggestions for potential important future investigation directions to overcome these challenges and bridge the gap between research and practice.

Suggested Citation

  • Shi, Zhongtuo & Yao, Wei & Li, Zhouping & Zeng, Lingkang & Zhao, Yifan & Zhang, Runfeng & Tang, Yong & Wen, Jinyu, 2020. "Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions," Applied Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920312228
    DOI: 10.1016/j.apenergy.2020.115733
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920312228
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    2. Hua, Haochen & Qin, Yuchao & Hao, Chuantong & Cao, Junwei, 2019. "Optimal energy management strategies for energy Internet via deep reinforcement learning approach," Applied Energy, Elsevier, vol. 239(C), pages 598-609.
    3. Xi, Lei & Chen, Jianfeng & Huang, Yuehua & Xu, Yanchun & Liu, Lang & Zhou, Yimin & Li, Yudan, 2018. "Smart generation control based on multi-agent reinforcement learning with the idea of the time tunnel," Energy, Elsevier, vol. 153(C), pages 977-987.
    4. Shi, Zhongtuo & Yao, Wei & Zeng, Lingkang & Wen, Jianfeng & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu, 2020. "Convolutional neural network-based power system transient stability assessment and instability mode prediction," Applied Energy, Elsevier, vol. 263(C).
    5. Douglas Heaven, 2019. "Why deep-learning AIs are so easy to fool," Nature, Nature, vol. 574(7777), pages 163-166, October.
    6. Xi, Lei & Yu, Tao & Yang, Bo & Zhang, Xiaoshun & Qiu, Xuanyu, 2016. "A wolf pack hunting strategy based virtual tribes control for automatic generation control of smart grid," Applied Energy, Elsevier, vol. 178(C), pages 198-211.
    7. Hossain, M.S. & Madlool, N.A. & Rahim, N.A. & Selvaraj, J. & Pandey, A.K. & Khan, Abdul Faheem, 2016. "Role of smart grid in renewable energy: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1168-1184.
    8. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    9. Wu, Jiajing & Fang, Biaoyan & Fang, Junyuan & Chen, Xi & Tse, Chi K., 2019. "Sequential topology recovery of complex power systems based on reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    10. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    11. Wang, Qin & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu & Yang, Xiaobo & Xie, Hailian & Huang, Xing, 2020. "Dynamic modeling and small signal stability analysis of distributed photovoltaic grid-connected system with large scale of panel level DC optimizers," Applied Energy, Elsevier, vol. 259(C).
    12. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fatima Zahra Zahraoui & Mehdi Et-taoussi & Houssam Eddine Chakir & Hamid Ouadi & Brahim Elbhiri, 2023. "Bellman–Genetic Hybrid Algorithm Optimization in Rural Area Microgrids," Energies, MDPI, vol. 16(19), pages 1-26, September.
    2. Walter Leal Filho & Peter Yang & João Henrique Paulino Pires Eustachio & Anabela Marisa Azul & Joshua C. Gellers & Agata Gielczyk & Maria Alzira Pimenta Dinis & Valerija Kozlova, 2023. "Deploying digitalisation and artificial intelligence in sustainable development research," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 4957-4988, June.
    3. Chongchong Xu & Zhicheng Liao & Chaojie Li & Xiaojun Zhou & Renyou Xie, 2022. "Review on Interpretable Machine Learning in Smart Grid," Energies, MDPI, vol. 15(12), pages 1-31, June.
    4. Jose Ulises Castellanos Contreras & Leonardo Rodríguez Urrego, 2023. "Technological Developments in Control Models Using Petri Nets for Smart Grids: A Review," Energies, MDPI, vol. 16(8), pages 1-21, April.
    5. Chao-Chung Hsu & Bi-Hai Jiang & Chun-Cheng Lin, 2023. "A Survey on Recent Applications of Artificial Intelligence and Optimization for Smart Grids in Smart Manufacturing," Energies, MDPI, vol. 16(22), pages 1-15, November.
    6. Huang, Wanjun & Zhang, Xinran & Zheng, Weiye, 2021. "Resilient power network structure for stable operation of energy systems: A transfer learning approach," Applied Energy, Elsevier, vol. 296(C).
    7. Hugo Gaspar Hernandez-Palma & Jonny Rafael Plaza Alvarado & Jesús Enrique García Guiliany & Guilherme Luiz Dotto & Claudete Gindri Ramos, 2024. "Implications of Machine Learning in the Generation of Renewable Energies in Latin America from a Globalized Vision: A Systematic Review," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 1-10, March.
    8. Musawenkosi Lethumcebo Thanduxolo Zulu & Rudiren Pillay Carpanen & Remy Tiako, 2023. "A Comprehensive Review: Study of Artificial Intelligence Optimization Technique Applications in a Hybrid Microgrid at Times of Fault Outbreaks," Energies, MDPI, vol. 16(4), pages 1-32, February.
    9. Li, Jiale & Yang, Bo & Huang, Jianxiang & Guo, Zhengxun & Wang, Jingbo & Zhang, Rui & Hu, Yuanweiji & Shu, Hongchun & Chen, Yixuan & Yan, Yunfeng, 2023. "Optimal planning of Electricity–Hydrogen hybrid energy storage system considering demand response in active distribution network," Energy, Elsevier, vol. 273(C).
    10. Zhang, Xiaojing & Khan, Khalid & Shao, Xuefeng & Oprean-Stan, Camelia & Zhang, Qian, 2024. "The rising role of artificial intelligence in renewable energy development in China," Energy Economics, Elsevier, vol. 132(C).
    11. Prince Waqas Khan & Yongjun Kim & Yung-Cheol Byun & Sang-Joon Lee, 2021. "Influencing Factors Evaluation of Machine Learning-Based Energy Consumption Prediction," Energies, MDPI, vol. 14(21), pages 1-22, November.
    12. Shi, Zhongtuo & Yao, Wei & Zhao, Yifan & Ai, Xiaomeng & Wen, Jinyu & Cheng, Shijie, 2024. "Two-stage weakly supervised learning to mitigate label noise for intelligent identification of power system dominant instability mode," Applied Energy, Elsevier, vol. 359(C).
    13. Noman, Abdullah Al & Tasneem, Zinat & Sahed, Md. Fahad & Muyeen, S.M. & Das, Sajal K. & Alam, Firoz, 2022. "Towards next generation Savonius wind turbine: Artificial intelligence in blade design trends and framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Mahmoud Aref & Almoataz Y. Abdelaziz & Zong Woo Geem & Junhee Hong & Farag K. Abo-Elyousr, 2023. "Oscillation Damping Neuro-Based Controllers Augmented Solar Energy Penetration Management of Power System Stability," Energies, MDPI, vol. 16(5), pages 1-21, March.
    15. Keighobadi, Jafar & Mohammadian KhalafAnsar, Hadi & Naseradinmousavi, Peiman, 2022. "Adaptive neural dynamic surface control for uniform energy exploitation of floating wind turbine," Applied Energy, Elsevier, vol. 316(C).
    16. Lu, Qing & Zhang, Yufeng, 2022. "A multi-objective optimization model considering users' satisfaction and multi-type demand response in dynamic electricity price," Energy, Elsevier, vol. 240(C).
    17. Michael Meiser & Ingo Zinnikus, 2024. "A Survey on the Use of Synthetic Data for Enhancing Key Aspects of Trustworthy AI in the Energy Domain: Challenges and Opportunities," Energies, MDPI, vol. 17(9), pages 1-29, April.
    18. Tursunboev, Jamshid & Palakonda, Vikas & Kang, Jae-Mo, 2024. "Multi-Objective Evolutionary Hybrid Deep Learning for energy theft detection," Applied Energy, Elsevier, vol. 363(C).
    19. Nazir, Lubna & Sharifi, Ayyoob, 2024. "An analysis of barriers to the implementation of smart grid technology in Pakistan," Renewable Energy, Elsevier, vol. 220(C).
    20. Pranobjyoti Lahon & Aditya Bihar Kandali & Utpal Barman & Ruhit Jyoti Konwar & Debdeep Saha & Manob Jyoti Saikia, 2024. "Deep Neural Network-Based Smart Grid Stability Analysis: Enhancing Grid Resilience and Performance," Energies, MDPI, vol. 17(11), pages 1-17, May.
    21. Zhan, Xianwen & Han, Song & Rong, Na & Cao, Yun, 2023. "A hybrid transfer learning method for transient stability prediction considering sample imbalance," Applied Energy, Elsevier, vol. 333(C).
    22. Lutfu Saribulut & Gorkem Ok & Arman Ameen, 2023. "A Case Study on National Electricity Blackout of Turkey," Energies, MDPI, vol. 16(11), pages 1-20, May.
    23. Yin, Linfei & Lu, Yuejiang, 2021. "Expandable deep width learning for voltage control of three-state energy model based smart grids containing flexible energy sources," Energy, Elsevier, vol. 226(C).
    24. Cai, Qingsen & Luo, XingQi & Wang, Peng & Gao, Chunyang & Zhao, Peiyu, 2022. "Hybrid model-driven and data-driven control method based on machine learning algorithm in energy hub and application," Applied Energy, Elsevier, vol. 305(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perera, A.T.D. & Kamalaruban, Parameswaran, 2021. "Applications of reinforcement learning in energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    3. Touzani, Samir & Prakash, Anand Krishnan & Wang, Zhe & Agarwal, Shreya & Pritoni, Marco & Kiran, Mariam & Brown, Richard & Granderson, Jessica, 2021. "Controlling distributed energy resources via deep reinforcement learning for load flexibility and energy efficiency," Applied Energy, Elsevier, vol. 304(C).
    4. Elsisi, Mahmoud & Amer, Mohammed & Dababat, Alya’ & Su, Chun-Lien, 2023. "A comprehensive review of machine learning and IoT solutions for demand side energy management, conservation, and resilient operation," Energy, Elsevier, vol. 281(C).
    5. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    6. Oleh Lukianykhin & Tetiana Bogodorova, 2021. "Voltage Control-Based Ancillary Service Using Deep Reinforcement Learning," Energies, MDPI, vol. 14(8), pages 1-22, April.
    7. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    8. Keller, Alexander & Dahm, Ken, 2019. "Integral equations and machine learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 2-12.
    9. Seongwoo Lee & Joonho Seon & Byungsun Hwang & Soohyun Kim & Youngghyu Sun & Jinyoung Kim, 2024. "Recent Trends and Issues of Energy Management Systems Using Machine Learning," Energies, MDPI, vol. 17(3), pages 1-24, January.
    10. Huaizhi Wang & Xian Zhang & Qing Li & Guibin Wang & Hui Jiang & Jianchun Peng, 2018. "Recursive Method for Distribution System Reliability Evaluation," Energies, MDPI, vol. 11(10), pages 1-15, October.
    11. Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
    12. Xueqing Yan & Yongming Li, 2023. "A Novel Discrete Differential Evolution with Varying Variables for the Deficiency Number of Mahjong Hand," Mathematics, MDPI, vol. 11(9), pages 1-21, May.
    13. Magdalena Krystyna Wyrwicka & Ewa Więcek-Janka & Łukasz Brzeziński, 2023. "Transition to Sustainable Energy System for Smart Cities—Literature Review," Energies, MDPI, vol. 16(21), pages 1-26, October.
    14. Jianjun Chen & Weihao Hu & Di Cao & Bin Zhang & Qi Huang & Zhe Chen & Frede Blaabjerg, 2019. "An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach," Energies, MDPI, vol. 12(14), pages 1-15, July.
    15. Máximo A. Domínguez-Garabitos & Víctor S. Ocaña-Guevara & Félix Santos-García & Adriana Arango-Manrique & Miguel Aybar-Mejía, 2022. "A Methodological Proposal for Implementing Demand-Shifting Strategies in the Wholesale Electricity Market," Energies, MDPI, vol. 15(4), pages 1-28, February.
    16. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    17. Lu Wang & Wenqing Ai & Tianhu Deng & Zuo‐Jun M. Shen & Changjing Hong, 2020. "Optimal production ramp‐up in the smartphone manufacturing industry," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 685-704, December.
    18. Sajjad Miran & Muhammad Tamoor & Tayybah Kiren & Faakhar Raza & Muhammad Imtiaz Hussain & Jun-Tae Kim, 2022. "Optimization of Standalone Photovoltaic Drip Irrigation System: A Simulation Study," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    19. Morato, P.G. & Andriotis, C.P. & Papakonstantinou, K.G. & Rigo, P., 2023. "Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    20. Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Hiroki Sakaji & Kiyoshi Izumi & Atsuo Kato, 2020. "Deep Reinforcement Learning in Agent Based Financial Market Simulation," JRFM, MDPI, vol. 13(4), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920312228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.