IDEAS home Printed from https://ideas.repec.org/a/dem/demres/v29y2013i43.html
   My bibliography  Save this article

Integrating uncertainty in time series population forecasts: An illustration using a simple projection model

Author

Listed:
  • Guy Abel

    (University of Hong Kong)

  • Jakub Bijak

    (University of Southampton)

  • Jonathan J. Forster

    (University of Warwick)

  • James Raymer

    (Australian National University)

  • Peter W.F. Smith

    (ESRC Research Centre for Population Change)

  • Jackie S.T. Wong

    (University of Southampton)

Abstract

Background: Population forecasts are widely used for public policy purposes. Methods to quantify the uncertainty in forecasts tend to ignore model uncertainty and to be based on a single model. Objective: In this paper, we use Bayesian time series models to obtain future population estimates with associated measures of uncertainty. The models are compared based on Bayesian posterior model probabilities, which are then used to provide model-averaged forecasts. Methods: The focus is on a simple projection model with the historical data representing population change in England and Wales from 1841 to 2007. Bayesian forecasts to the year 2032 are obtained based on a range of models, including autoregression models, stochastic volatility models and random variance shift models. The computational steps to fit each of these models using the OpenBUGS software via R are illustrated. Results: We show that the Bayesian approach is adept in capturing multiple sources of uncertainty in population projections, including model uncertainty. The inclusion of non-constant variance improves the fit of the models and provides more realistic predictive uncertainty levels. The forecasting methodology is assessed through fitting the models to various truncated data series.

Suggested Citation

  • Guy Abel & Jakub Bijak & Jonathan J. Forster & James Raymer & Peter W.F. Smith & Jackie S.T. Wong, 2013. "Integrating uncertainty in time series population forecasts: An illustration using a simple projection model," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(43), pages 1187-1226.
  • Handle: RePEc:dem:demres:v:29:y:2013:i:43
    DOI: 10.4054/DemRes.2013.29.43
    as

    Download full text from publisher

    File URL: https://www.demographic-research.org/volumes/vol29/43/29-43.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/DemRes.2013.29.43?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James Raymer & Jonathan J. Forster & Peter W.F Smith & Jakub Bijak & Arkadiusz Wiśniowski, 2012. "Integrated Modelling of European Migration: Background, specification and results," Norface Discussion Paper Series 2012004, Norface Research Programme on Migration, Department of Economics, University College London.
    2. James Raymer & Arkadiusz Wiśniowski & Jonathan J. Forster & Peter W. F. Smith & Jakub Bijak, 2013. "Integrated Modeling of European Migration," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 801-819, September.
    3. Sturtz, Sibylle & Ligges, Uwe & Gelman, Andrew, 2005. "R2WinBUGS: A Package for Running WinBUGS from R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i03).
    4. Leontine Alkema & Adrian E. Raftery & Patrick Gerland & Samuel J. Clark & Francois Pelletier, 2012. "Estimating trends in the total fertility rate with uncertainty using imperfect data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 26(15), pages 331-362.
    5. Adrian Raftery & Jennifer Chunn & Patrick Gerland & Hana Ševčíková, 2013. "Bayesian Probabilistic Projections of Life Expectancy for All Countries," Demography, Springer;Population Association of America (PAA), vol. 50(3), pages 777-801, June.
    6. Joao Saboia, 1974. "Modeling and forecasting populations by time series: The Swedish case," Demography, Springer;Population Association of America (PAA), vol. 11(3), pages 483-492, August.
    7. Wolfgang Lutz & Warren Sanderson & Sergei Scherbov, 2001. "The end of world population growth," Nature, Nature, vol. 412(6846), pages 543-545, August.
    8. Buti,Marco & Deroose,Servaas & Gaspar,Vitor & Martins,João Nogueira (ed.), 2010. "The Euro," Cambridge Books, Cambridge University Press, number 9789279098420.
    9. Tuljapurkar, Shripad & Boe, Carl, 1999. "Validation, probability-weighted priors, and information in stochastic forecasts," International Journal of Forecasting, Elsevier, vol. 15(3), pages 259-271, July.
    10. Jeff Tayman & Stanley Smith & Jeffrey Lin, 2007. "Precision, bias, and uncertainty for state population forecasts: an exploratory analysis of time series models," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 26(3), pages 347-369, June.
    11. Nico Keilman, 2001. "Uncertain population forecasts," Nature, Nature, vol. 412(6846), pages 490-491, August.
    12. Leontine Alkema & Adrian Raftery & Patrick Gerland & Samuel Clark & François Pelletier & Thomas Buettner & Gerhard Heilig, 2011. "Probabilistic Projections of the Total Fertility Rate for All Countries," Demography, Springer;Population Association of America (PAA), vol. 48(3), pages 815-839, August.
    13. Nico Keilman & Dinh Quang Pham & Arve Hetland, 2002. "Why population forecasts should be probabilistic - illustrated by the case of Norway," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 6(15), pages 409-454.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan Azose & Adrian Raftery, 2015. "Bayesian Probabilistic Projection of International Migration," Demography, Springer;Population Association of America (PAA), vol. 52(5), pages 1627-1650, October.
    2. Sebal Oo & Makoto Tsukai, 2022. "Long-Term Impact of Interregional Migrants on Population Prediction," Sustainability, MDPI, vol. 14(11), pages 1-21, May.
    3. Dunstan Kim & Ball Christopher, 2016. "Demographic Projections: User and Producer Experiences of Adopting a Stochastic Approach," Journal of Official Statistics, Sciendo, vol. 32(4), pages 947-962, December.
    4. Carlo Giovanni Camarda, 2019. "Smooth constrained mortality forecasting," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(38), pages 1091-1130.
    5. Shang, Han Lin & Smith, Peter W.F. & Bijak, Jakub & Wiśniowski, Arkadiusz, 2016. "A multilevel functional data method for forecasting population, with an application to the United Kingdom," International Journal of Forecasting, Elsevier, vol. 32(3), pages 629-649.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    2. Raftery, Adrian E. & Ševčíková, Hana, 2023. "Probabilistic population forecasting: Short to very long-term," International Journal of Forecasting, Elsevier, vol. 39(1), pages 73-97.
    3. Meng Xu & Helge Brunborg & Joel E. Cohen, 2017. "Evaluating multi-regional population projections with Taylor’s law of mean–variance scaling and its generalisation," Journal of Population Research, Springer, vol. 34(1), pages 79-99, March.
    4. Bailey Fosdick & Adrian E. Raftery, 2014. "Regional probabilistic fertility forecasting by modeling between-country correlations," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(35), pages 1011-1034.
    5. Niall Newsham & Francisco Rowe, 2021. "Projecting the demographic impact of Syrian migration in a rapidly ageing society, Germany," Journal of Geographical Systems, Springer, vol. 23(2), pages 231-261, April.
    6. Heinz Stefan, 2014. "Uncertainty quantification of world population growth: A self-similar PDF model," Monte Carlo Methods and Applications, De Gruyter, vol. 20(4), pages 261-277, December.
    7. Vanella, Patrizio & Deschermeier, Philipp, 2018. "A Probabilistic Cohort-Component Model for Population Forecasting - The Case of Germany," Hannover Economic Papers (HEP) dp-638, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    8. Francesco Billari & Rebecca Graziani & Eugenio Melilli, 2014. "Stochastic Population Forecasting Based on Combinations of Expert Evaluations Within the Bayesian Paradigm," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1933-1954, October.
    9. Patrizio Vanella & Philipp Deschermeier & Christina B. Wilke, 2020. "An Overview of Population Projections—Methodological Concepts, International Data Availability, and Use Cases," Forecasting, MDPI, vol. 2(3), pages 1-18, September.
    10. Heer, Burkhard & Polito, Vito & Wickens, Michael R., 2020. "Population aging, social security and fiscal limits," Journal of Economic Dynamics and Control, Elsevier, vol. 116(C).
    11. Mei Sang & Jing Jiang & Xin Huang & Feifei Zhu & Qian Wang, 2024. "Spatial and temporal changes in population distribution and population projection at county level in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    12. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    13. Jeff Tayman & Stanley Smith & Jeffrey Lin, 2007. "Precision, bias, and uncertainty for state population forecasts: an exploratory analysis of time series models," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 26(3), pages 347-369, June.
    14. Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
    15. Michael Pearce & Adrian E. Raftery, 2021. "Probabilistic forecasting of maximum human lifespan by 2100 using Bayesian population projections," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 44(52), pages 1271-1294.
    16. Ortega, Jose Antonio & Poncela, Pilar, 2005. "Joint forecasts of Southern European fertility rates with non-stationary dynamic factor models," International Journal of Forecasting, Elsevier, vol. 21(3), pages 539-550.
    17. Jeff Tayman, 2011. "Assessing Uncertainty in Small Area Forecasts: State of the Practice and Implementation Strategy," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 30(5), pages 781-800, October.
    18. Wilson, Chris, 2002. "Forecast errors in global population projections: implications for food," 2002 Conference (46th), February 13-15, 2002, Canberra, Australia 125608, Australian Agricultural and Resource Economics Society.
    19. Carl P. Schmertmann & Marcos R. Gonzaga, 2018. "Bayesian Estimation of Age-Specific Mortality and Life Expectancy for Small Areas With Defective Vital Records," Demography, Springer;Population Association of America (PAA), vol. 55(4), pages 1363-1388, August.
    20. Phoebe Koundouri & Georgios I. Papayiannis & Achilleas Vassilopoulos & Athanasios Yannacopoulos, 2022. "A general framework for the generation of probabilistic socioeconomic scenarios and risk quantification concerning food security with application in the Upper Nile river basin," DEOS Working Papers 2203, Athens University of Economics and Business.

    More about this item

    Keywords

    population forecasting; England; Wales; Bayesian approach; model averaging;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:demres:v:29:y:2013:i:43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Office (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.