IDEAS home Printed from https://ideas.repec.org/a/dem/demres/v44y2021i52.html
   My bibliography  Save this article

Probabilistic forecasting of maximum human lifespan by 2100 using Bayesian population projections

Author

Listed:
  • Michael Pearce

    (University of Washington)

  • Adrian E. Raftery

    (University of Washington)

Abstract

Background: We consider the problem of quantifying the human lifespan using a statistical approach that probabilistically forecasts the maximum reported age at death (MRAD) through 2100. Objective: We seek to quantify the probability that any person attains various extreme ages, such as those above 120, by the year 2100. Methods: We use the exponential survival model for supercentenarians (people over age 110) of Rootzén and Zholud (2017) but extend the forecasting window, quantify population uncertainty using Bayesian population projections, and incorporate the most recent data from the International Database on Longevity (IDL) to obtain unconditional estimates of the distribution of MRAD this century in a fully Bayesian analysis. Results: We find that the exponential survival model for supercentenarians is consistent with the most recent IDL data and that projections of the population aged 110–114 through 2080 are sensible. We integrate over the posterior distributions of the exponential model parameter and uncertainty in the supercentenarian population projections to estimate an unconditional distribution of MRAD by 2100. Conclusions: Based on the Bayesian analysis, there is a greater than 99% probability that the current MRAD of 122 will be broken by 2100. We estimate the probabilities that a person lives to at least age 126, 128, or 130 this century, as 89%, 44%, and 13%, respectively. Contribution: We have updated the supercentenarian survival model of Rootzén and Zholud using the most recent IDL data, incorporated Bayesian population projections, and extended the forecasting window to create the first fully Bayesian and unconditional probabilistic projection of MRAD by 2100.

Suggested Citation

  • Michael Pearce & Adrian E. Raftery, 2021. "Probabilistic forecasting of maximum human lifespan by 2100 using Bayesian population projections," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 44(52), pages 1271-1294.
  • Handle: RePEc:dem:demres:v:44:y:2021:i:52
    DOI: 10.4054/DemRes.2021.44.52
    as

    Download full text from publisher

    File URL: https://www.demographic-research.org/volumes/vol44/52/44-52.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/DemRes.2021.44.52?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joop de Beer & Anastasios Bardoutsos & Fanny Janssen, 2017. "Maximum human lifespan may increase to 125 years," Nature, Nature, vol. 546(7660), pages 16-17, June.
    2. Bruce A. Carnes & S. Jay Olshansky, 2007. "A Realist View of Aging, Mortality, and Future Longevity," Population and Development Review, The Population Council, Inc., vol. 33(2), pages 367-381, June.
    3. Bailey Fosdick & Adrian E. Raftery, 2014. "Regional probabilistic fertility forecasting by modeling between-country correlations," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(35), pages 1011-1034.
    4. Jean-Marie Robine & James Vaupel, 2002. "Emergence of Supercentenarians in Low-Mortality Countries," North American Actuarial Journal, Taylor & Francis Journals, vol. 6(3), pages 54-63.
    5. Adrian Raftery & Jennifer Chunn & Patrick Gerland & Hana Ševčíková, 2013. "Bayesian Probabilistic Projections of Life Expectancy for All Countries," Demography, Springer;Population Association of America (PAA), vol. 50(3), pages 777-801, June.
    6. Ševčíková, Hana & Alkema, Leontine & Raftery, Adrian, 2011. "bayesTFR: An R package for Probabilistic Projections of the Total Fertility Rate," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i01).
    7. Maarten P. Rozing & Thomas B. L. Kirkwood & Rudi G. J. Westendorp, 2017. "Is there evidence for a limit to human lifespan?," Nature, Nature, vol. 546(7660), pages 11-12, June.
    8. Ševčíková, Hana & Raftery, Adrian E., 2016. "bayesPop: Probabilistic Population Projections," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 75(i05).
    9. Adam Lenart & James W. Vaupel, 2017. "Questionable evidence for a limit to human lifespan," Nature, Nature, vol. 546(7660), pages 13-14, June.
    10. Xiao Dong & Brandon Milholland & Jan Vijg, 2016. "Evidence for a limit to human lifespan," Nature, Nature, vol. 538(7624), pages 257-259, October.
    11. Bryan G. Hughes & Siegfried Hekimi, 2017. "Many possible maximum lifespan trajectories," Nature, Nature, vol. 546(7660), pages 8-9, June.
    12. Leontine Alkema & Adrian Raftery & Patrick Gerland & Samuel Clark & François Pelletier & Thomas Buettner & Gerhard Heilig, 2011. "Probabilistic Projections of the Total Fertility Rate for All Countries," Demography, Springer;Population Association of America (PAA), vol. 48(3), pages 815-839, August.
    13. Dennis M. Feehan, 2018. "Separating the Signal From the Noise: Evidence for Deceleration in Old-Age Death Rates," Demography, Springer;Population Association of America (PAA), vol. 55(6), pages 2025-2044, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camarda, Carlo Giovanni, 2022. "The curse of the plateau. Measuring confidence in human mortality estimates at extreme ages," Theoretical Population Biology, Elsevier, vol. 144(C), pages 24-36.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raftery, Adrian E. & Ševčíková, Hana, 2023. "Probabilistic population forecasting: Short to very long-term," International Journal of Forecasting, Elsevier, vol. 39(1), pages 73-97.
    2. Richmond, Peter & Roehner, Bertrand M. & Irannezhad, Ali & Hutzler, Stefan, 2021. "Mortality: A physics perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    3. Koundouri, Phoebe & Papayiannis, Georgios I. & Vassilopoulos, Achilleas & Yannacopoulos, Athanasios N., 2023. "Probabilistic Scenario-Based Assessment of National Food Security Risks with Application to Egypt and Ethiopia," MPRA Paper 122007, University Library of Munich, Germany.
    4. Camarda, Carlo Giovanni, 2022. "The curse of the plateau. Measuring confidence in human mortality estimates at extreme ages," Theoretical Population Biology, Elsevier, vol. 144(C), pages 24-36.
    5. Phoebe Koundouri & Georgios I. Papayiannis & Achilleas Vassilopoulos & Athanasios Yannacopoulos, 2022. "A general framework for the generation of probabilistic socioeconomic scenarios and risk quantification concerning food security with application in the Upper Nile river basin," DEOS Working Papers 2203, Athens University of Economics and Business.
    6. Daphne H. Liu & Adrian E. Raftery, 2020. "How Do Education and Family Planning Accelerate Fertility Decline?," Population and Development Review, The Population Council, Inc., vol. 46(3), pages 409-441, September.
    7. Carl P. Schmertmann & Marcos R. Gonzaga, 2018. "Bayesian Estimation of Age-Specific Mortality and Life Expectancy for Small Areas With Defective Vital Records," Demography, Springer;Population Association of America (PAA), vol. 55(4), pages 1363-1388, August.
    8. David J Sharrow & Samuel J Clark & Adrian E Raftery, 2014. "Modeling Age-Specific Mortality for Countries with Generalized HIV Epidemics," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-10, May.
    9. Jonathan Azose & Adrian Raftery, 2015. "Bayesian Probabilistic Projection of International Migration," Demography, Springer;Population Association of America (PAA), vol. 52(5), pages 1627-1650, October.
    10. Hana Sevcikova & Adrian E. Raftery & Patrick Gerland, 2018. "Probabilistic projection of subnational total fertility rates," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 38(60), pages 1843-1884.
    11. Heer, Burkhard & Polito, Vito & Wickens, Michael R., 2020. "Population aging, social security and fiscal limits," Journal of Economic Dynamics and Control, Elsevier, vol. 116(C).
    12. Francesco Billari & Rebecca Graziani & Eugenio Melilli, 2014. "Stochastic Population Forecasting Based on Combinations of Expert Evaluations Within the Bayesian Paradigm," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1933-1954, October.
    13. Mei Sang & Jing Jiang & Xin Huang & Feifei Zhu & Qian Wang, 2024. "Spatial and temporal changes in population distribution and population projection at county level in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    14. Meng Xu & Helge Brunborg & Joel E. Cohen, 2017. "Evaluating multi-regional population projections with Taylor’s law of mean–variance scaling and its generalisation," Journal of Population Research, Springer, vol. 34(1), pages 79-99, March.
    15. Kevin Rennert & Brian C. Prest & William A. Pizer & Richard G. Newell & David Anthoff & Cora Kingdon & Lisa Rennels & Roger Cooke & Adrian E. Raftery & Hana Sevcikova & Frank Errickson, 2021. "The Social Cost of Carbon: Advances in Long-Term Probabilistic Projections of Population, GDP, Emissions, and Discount Rates," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 52(2 (Fall)), pages 223-305.
    16. Bailey Fosdick & Adrian E. Raftery, 2014. "Regional probabilistic fertility forecasting by modeling between-country correlations," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(35), pages 1011-1034.
    17. Niall Newsham & Francisco Rowe, 2021. "Projecting the demographic impact of Syrian migration in a rapidly ageing society, Germany," Journal of Geographical Systems, Springer, vol. 23(2), pages 231-261, April.
    18. Patrizio Vanella & Philipp Deschermeier & Christina B. Wilke, 2020. "An Overview of Population Projections—Methodological Concepts, International Data Availability, and Use Cases," Forecasting, MDPI, vol. 2(3), pages 1-18, September.
    19. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    20. Vanella, Patrizio, 2017. "Age- and Sex-Specific Fertility in Germany until the Year 2040 - The Impact of International Migration," Hannover Economic Papers (HEP) dp-606, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.

    More about this item

    Keywords

    supercentenarians; population forecasting; Bayesian population projections; human lifespan;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:demres:v:44:y:2021:i:52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Office (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.