IDEAS home Printed from https://ideas.repec.org/a/dem/demres/v26y2012i15.html
   My bibliography  Save this article

Estimating trends in the total fertility rate with uncertainty using imperfect data

Author

Listed:
  • Leontine Alkema

    (University of Massachusetts Amherst)

  • Adrian E. Raftery

    (University of Washington)

  • Patrick Gerland

    (United Nations Population Division)

  • Samuel J. Clark

    (Ohio State University)

  • Francois Pelletier

    (Statistics Canada)

Abstract

Background: Estimating the total fertility rate is challenging for many developing countries because of limited data and varying data quality. A standardized, reproducible approach to produce estimates that include an uncertainty assessment is desired. Methods: We develop a method to estimate and assess uncertainty in the total fertility rate over time, based on multiple imperfect observations from different data sources including surveys and censuses. We take account of measurement error in observations by decomposing it into bias and variance and assess both by linear regression on a variety of data quality covariates. We estimate the total fertility rate using a local smoother, and assess uncertainty using the weighted likelihood bootstrap. Results: We apply our method to data from seven countries in West Africa and construct estimates and uncertainty intervals for the total fertility rate. Based on cross-validation exercises, we find that accounting for differences in data quality between observations gives better calibrated confidence intervals and reduces bias. Conclusions: When working with multiple imperfect observations from different data sources to estimate the total fertility rate, or demographic indicators in general, potential biases and differences in error variance have to be taken into account to improve the estimates and their uncertainty assessment.

Suggested Citation

  • Leontine Alkema & Adrian E. Raftery & Patrick Gerland & Samuel J. Clark & Francois Pelletier, 2012. "Estimating trends in the total fertility rate with uncertainty using imperfect data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 26(15), pages 331-362.
  • Handle: RePEc:dem:demres:v:26:y:2012:i:15
    DOI: 10.4054/DemRes.2012.26.15
    as

    Download full text from publisher

    File URL: https://www.demographic-research.org/volumes/vol26/15/26-15.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/DemRes.2012.26.15?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    2. Tom Moultrie & Rob Dorrington, 2008. "Sources of error and bias in methods of fertility estimation contingent on the P/F ratio in a time of declining fertility and rising mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 19(46), pages 1635-1662.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Finlay, Jocelyn E., 2021. "Women’s reproductive health and economic activity: A narrative review," World Development, Elsevier, vol. 139(C).
    2. Nina Cesare & Hedwig Lee & Tyler McCormick & Emma Spiro & Emilio Zagheni, 2018. "Promises and Pitfalls of Using Digital Traces for Demographic Research," Demography, Springer;Population Association of America (PAA), vol. 55(5), pages 1979-1999, October.
    3. Isabel Günther & Kenneth Harttgen, 2016. "Desired Fertility and Number of Children Born Across Time and Space," Demography, Springer;Population Association of America (PAA), vol. 53(1), pages 55-83, February.
    4. Guy Abel & Jakub Bijak & Jonathan J. Forster & James Raymer & Peter W.F. Smith & Jackie S.T. Wong, 2013. "Integrating uncertainty in time series population forecasts: An illustration using a simple projection model," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(43), pages 1187-1226.
    5. Ann Garbett & Brienna Perelli‐Harris & Sarah Neal, 2021. "The Untold Story of 50 Years of Adolescent Fertility in West Africa: A Cohort Perspective on the Quantum, Timing, and Spacing of Adolescent Childbearing," Population and Development Review, The Population Council, Inc., vol. 47(1), pages 7-40, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. MacKinnon, J G, 1989. "Heteroskedasticity-Robust Tests for Structural Change," Empirical Economics, Springer, vol. 14(2), pages 77-92.
    2. Gu, Chen & Kurov, Alexander & Wolfe, Marketa Halova, 2018. "Relief Rallies after FOMC Announcements as a Resolution of Uncertainty," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 1-18.
    3. Marc Poitras, 2004. "The Impact of Macroeconomic Announcements on Stock Prices: In Search of State Dependence," Southern Economic Journal, John Wiley & Sons, vol. 70(3), pages 549-565, January.
    4. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    5. Angrist, Josh & Lavy, Victor, 2002. "The Effect of High School Matriculation Awards: Evidence from Randomized Trials," CEPR Discussion Papers 3827, C.E.P.R. Discussion Papers.
    6. Koetter, Michael & Krause, Thomas & Tonzer, Lena, 2019. "Delay determinants of European Banking Union implementation," European Journal of Political Economy, Elsevier, vol. 58(C), pages 1-20.
    7. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    8. Lichner, Ivan & Lyócsa, Štefan & Výrostová, Eva, 2022. "Nominal and discretionary household income convergence: The effect of a crisis in a small open economy," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 18-31.
    9. Masaru Chiba, 2023. "Robust and efficient specification tests in Markov-switching autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 99-137, April.
    10. Panos Pashardes & Nicoletta Pashourtidou, 2011. "Consumer welfare from publicly supplemented private goods: age and income effects on demand for health care," Empirical Economics, Springer, vol. 41(3), pages 865-885, December.
    11. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2023. "Fast and reliable jackknife and bootstrap methods for cluster‐robust inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 671-694, August.
    12. Miller, Steve & Startz, Richard, 2019. "Feasible generalized least squares using support vector regression," Economics Letters, Elsevier, vol. 175(C), pages 28-31.
    13. Adam C. Sales & Ben B. Hansen, 2020. "Limitless Regression Discontinuity," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 143-174, April.
    14. Michael Funke & Marc Gronwald, 2008. "The Undisclosed Renminbi Basket: Are the Markets Telling Us Something about Where the Renminbi–US Dollar Exchange Rate is Going?," The World Economy, Wiley Blackwell, vol. 31(12), pages 1581-1598, December.
    15. Jonathan Temple, 1995. "Testing the augmented Solow Model," Economics Papers 18 & 106., Economics Group, Nuffield College, University of Oxford.
    16. Power, Sean Bradley & Cleary, Peter & Donnelly, Ray, 2017. "Accounting in the London Stock Exchange's extractive industry: The effect of policy diversity on the value relevance of exploration-related disclosures," The British Accounting Review, Elsevier, vol. 49(6), pages 545-559.
    17. Sviták, Jan & Tichem, Jan & Haasbeek, Stefan, 2021. "Price effects of search advertising restrictions," International Journal of Industrial Organization, Elsevier, vol. 77(C).
    18. Cheng, Tsung-Chi, 2012. "On simultaneously identifying outliers and heteroscedasticity without specific form," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2258-2272.
    19. Shaik, Saleem & Atwood, Joseph A. & Helmers, Glenn A., 2012. "Did 1933 new deal legislation contribute to farm real estate values: A regional analysis," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 801-816.
    20. Emmanuel Flachaire, 2002. "Bootstrapping heteroskedasticity consistent covariance matrix estimator," Computational Statistics, Springer, vol. 17(4), pages 501-506, December.

    More about this item

    Keywords

    retrospective surveys; Demographic and Health Surveys (DHS); Bayesian inference; local smoother; United Nations; weighted likelihood bootstrap; variable selection;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:demres:v:26:y:2012:i:15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Office (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.