IDEAS home Printed from https://ideas.repec.org/a/dem/demres/v26y2012i15.html
   My bibliography  Save this article

Estimating trends in the total fertility rate with uncertainty using imperfect data

Author

Listed:
  • Leontine Alkema

    (University of Massachusetts Amherst)

  • Adrian E. Raftery

    (University of Washington)

  • Patrick Gerland

    (United Nations)

  • Samuel J. Clark

    (Ohio State University)

  • Francois Pelletier

    (Statistics Canada)

Abstract

Background: Estimating the total fertility rate is challenging for many developing countries because of limited data and varying data quality. A standardized, reproducible approach to produce estimates that include an uncertainty assessment is desired. Methods: We develop a method to estimate and assess uncertainty in the total fertility rate over time, based on multiple imperfect observations from different data sources including surveys and censuses. We take account of measurement error in observations by decomposing it into bias and variance and assess both by linear regression on a variety of data quality covariates. We estimate the total fertility rate using a local smoother, and assess uncertainty using the weighted likelihood bootstrap. Results: We apply our method to data from seven countries in West Africa and construct estimates and uncertainty intervals for the total fertility rate. Based on cross-validation exercises, we find that accounting for differences in data quality between observations gives better calibrated confidence intervals and reduces bias. Conclusions: When working with multiple imperfect observations from different data sources to estimate the total fertility rate, or demographic indicators in general, potential biases and differences in error variance have to be taken into account to improve the estimates and their uncertainty assessment.

Suggested Citation

  • Leontine Alkema & Adrian E. Raftery & Patrick Gerland & Samuel J. Clark & Francois Pelletier, 2012. "Estimating trends in the total fertility rate with uncertainty using imperfect data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 26(15), pages 331-362.
  • Handle: RePEc:dem:demres:v:26:y:2012:i:15
    DOI: 10.4054/DemRes.2012.26.15
    as

    Download full text from publisher

    File URL: https://www.demographic-research.org/volumes/vol26/15/26-15.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/DemRes.2012.26.15?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    2. Tom Moultrie & Rob Dorrington, 2008. "Sources of error and bias in methods of fertility estimation contingent on the P/F ratio in a time of declining fertility and rising mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 19(46), pages 1635-1662.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Finlay, Jocelyn E., 2021. "Women’s reproductive health and economic activity: A narrative review," World Development, Elsevier, vol. 139(C).
    2. Guy Abel & Jakub Bijak & Jonathan J. Forster & James Raymer & Peter W.F. Smith & Jackie S.T. Wong, 2013. "Integrating uncertainty in time series population forecasts: An illustration using a simple projection model," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(43), pages 1187-1226.
    3. Isabel Günther & Kenneth Harttgen, 2016. "Desired Fertility and Number of Children Born Across Time and Space," Demography, Springer;Population Association of America (PAA), vol. 53(1), pages 55-83, February.
    4. Nina Cesare & Hedwig Lee & Tyler McCormick & Emma Spiro & Emilio Zagheni, 2018. "Promises and Pitfalls of Using Digital Traces for Demographic Research," Demography, Springer;Population Association of America (PAA), vol. 55(5), pages 1979-1999, October.
    5. Ann Garbett & Brienna Perelli‐Harris & Sarah Neal, 2021. "The Untold Story of 50 Years of Adolescent Fertility in West Africa: A Cohort Perspective on the Quantum, Timing, and Spacing of Adolescent Childbearing," Population and Development Review, The Population Council, Inc., vol. 47(1), pages 7-40, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tyrväinen, Timo, 1991. "Unions, wages and employment: evidence from Finland," Bank of Finland Research Discussion Papers 16/1991, Bank of Finland.
    2. MacKinnon, J G, 1989. "Heteroskedasticity-Robust Tests for Structural Change," Empirical Economics, Springer, vol. 14(2), pages 77-92.
    3. Gu, Chen & Kurov, Alexander & Wolfe, Marketa Halova, 2018. "Relief Rallies after FOMC Announcements as a Resolution of Uncertainty," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 1-18.
    4. Marc Poitras, 2004. "The Impact of Macroeconomic Announcements on Stock Prices: In Search of State Dependence," Southern Economic Journal, John Wiley & Sons, vol. 70(3), pages 549-565, January.
    5. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    6. Angrist, Josh & Lavy, Victor, 2002. "The Effect of High School Matriculation Awards: Evidence from Randomized Trials," CEPR Discussion Papers 3827, C.E.P.R. Discussion Papers.
    7. Koetter, Michael & Krause, Thomas & Tonzer, Lena, 2019. "Delay determinants of European Banking Union implementation," European Journal of Political Economy, Elsevier, vol. 58(C), pages 1-20.
    8. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    9. Cooney, John W. & Moeller, Thomas & Stegemoller, Mike, 2009. "The underpricing of private targets," Journal of Financial Economics, Elsevier, vol. 93(1), pages 51-66, July.
    10. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    11. R. R. Croes & Y. J. F. M. Krabbe-Alkemade & M. C. Mikkers, 2018. "Competition and quality indicators in the health care sector: empirical evidence from the Dutch hospital sector," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 19(1), pages 5-19, January.
    12. Donald W. K. Andrews & Patrik Guggenberger, 2014. "A Conditional-Heteroskedasticity-Robust Confidence Interval for the Autoregressive Parameter," The Review of Economics and Statistics, MIT Press, vol. 96(2), pages 376-381, May.
    13. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2023. "Fast and reliable jackknife and bootstrap methods for cluster‐robust inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 671-694, August.
    14. Lichner, Ivan & Lyócsa, Štefan & Výrostová, Eva, 2022. "Nominal and discretionary household income convergence: The effect of a crisis in a small open economy," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 18-31.
    15. Neil R. Ericsson & James G. MacKinnon, 2002. "Distributions of error correction tests for cointegration," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 285-318, June.
    16. Wooldridge, Jeffrey M., 2023. "What is a standard error? (And how should we compute it?)," Journal of Econometrics, Elsevier, vol. 237(2).
    17. Kaplanoglou, Georgia & Newbery, David Michael, 2003. "Indirect Taxation in Greece: Evaluation and Possible Reform," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 10(5), pages 511-533, September.
    18. Takeshima, Hiroyuki & Liverpool-Tasie, Lenis Saweda O., 2015. "Fertilizer subsidies, political influence and local food prices in sub-Saharan Africa: Evidence from Nigeria," Food Policy, Elsevier, vol. 54(C), pages 11-24.
    19. Masaru Chiba, 2023. "Robust and efficient specification tests in Markov-switching autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 99-137, April.
    20. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.

    More about this item

    Keywords

    retrospective surveys; Demographic and Health Surveys (DHS); Bayesian inference; local smoother; United Nations; weighted likelihood bootstrap; variable selection;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:demres:v:26:y:2012:i:15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Office (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.