IDEAS home Printed from https://ideas.repec.org/a/dem/demres/v6y2002i15.html
   My bibliography  Save this article

Why population forecasts should be probabilistic - illustrated by the case of Norway

Author

Listed:
  • Nico Keilman

    (Universitetet i Oslo)

  • Dinh Quang Pham

    (Statistisk sentralbyrå (Statistics Norway))

  • Arve Hetland

    (Statistisk sentralbyrå (Statistics Norway))

Abstract

Deterministic population forecasts do not give an appropriate indication of forecast uncertainty. Forecasts should be probabilistic, rather than deterministic, so that their expected accuracy can be assessed. We review three main methods to compute probabilistic forecasts, namely time series extrapolation, analysis of historical forecast errors, and expert judgement. We illustrate, by the case of Norway up to 2050, how elements of these three methods can be combined when computing prediction intervals for a population’s future size and age-sex composition. We show the relative importance for prediction intervals of various sources of variance, and compare our results with those of the official population forecast computed by Statistics Norway.

Suggested Citation

  • Nico Keilman & Dinh Quang Pham & Arve Hetland, 2002. "Why population forecasts should be probabilistic - illustrated by the case of Norway," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 6(15), pages 409-454.
  • Handle: RePEc:dem:demres:v:6:y:2002:i:15
    DOI: 10.4054/DemRes.2002.6.15
    as

    Download full text from publisher

    File URL: https://www.demographic-research.org/volumes/vol6/15/6-15.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/DemRes.2002.6.15?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pflaumer, Peter, 1988. "Confidence intervals for population projections based on Monte Carlo methods," International Journal of Forecasting, Elsevier, vol. 4(1), pages 135-142.
    2. Alho, Juha M., 1990. "Stochastic methods in population forecasting," International Journal of Forecasting, Elsevier, vol. 6(4), pages 521-530, December.
    3. Shripad Tuljapurkar & Nan Li & Carl Boe, 2000. "A universal pattern of mortality decline in the G7 countries," Nature, Nature, vol. 405(6788), pages 789-792, June.
    4. repec:cai:popine:popu_p1989_44n1_0157 is not listed on IDEAS
    5. Wolfgang Lutz & Warren Sanderson & Sergei Scherbov, 2001. "The end of world population growth," Nature, Nature, vol. 412(6846), pages 543-545, August.
    6. Joel Cohen, 1986. "Population forecasts and confidence intervals for sweden: a comparison of model-based and empirical approaches," Demography, Springer;Population Association of America (PAA), vol. 23(1), pages 105-126, February.
    7. Lee, Ronald D., 1993. "Modeling and forecasting the time series of US fertility: Age distribution, range, and ultimate level," International Journal of Forecasting, Elsevier, vol. 9(2), pages 187-202, August.
    8. Auerbach,Alan J. & Lee,Ronald D. (ed.), 2001. "Demographic Change and Fiscal Policy," Cambridge Books, Cambridge University Press, number 9780521662444, November.
    9. Nico Keilman & Dinh Quang Pham, 2000. "Predictive Intervals for Age-Specific Fertility," European Journal of Population, Springer;European Association for Population Studies, vol. 16(1), pages 41-65, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    2. Ortega, Jose Antonio & Poncela, Pilar, 2005. "Joint forecasts of Southern European fertility rates with non-stationary dynamic factor models," International Journal of Forecasting, Elsevier, vol. 21(3), pages 539-550.
    3. Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
    4. Wilson, Chris, 2002. "Forecast errors in global population projections: implications for food," 2002 Conference (46th), February 13-15, 2002, Canberra, Australia 125608, Australian Agricultural and Resource Economics Society.
    5. Tuljapurkar, Shripad & Boe, Carl, 1999. "Validation, probability-weighted priors, and information in stochastic forecasts," International Journal of Forecasting, Elsevier, vol. 15(3), pages 259-271, July.
    6. Han Lin Shang, 2012. "Point and interval forecasts of age-specific life expectancies," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 27(21), pages 593-644.
    7. Ronald Lee & Ryan Edwards, 2002. "The Fiscal Effects of Population Aging in the US: Assessing the Uncertainties," NBER Chapters, in: Tax Policy and the Economy, Volume 16, pages 141-180, National Bureau of Economic Research, Inc.
    8. Prskawetz, A. & Kogel, T. & Sanderson, W.C. & Scherbov, S., 2007. "The effects of age structure on economic growth: An application of probabilistic forecasting to India," International Journal of Forecasting, Elsevier, vol. 23(4), pages 587-602.
    9. Jeff Tayman & Stanley Smith & Jeffrey Lin, 2007. "Precision, bias, and uncertainty for state population forecasts: an exploratory analysis of time series models," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 26(3), pages 347-369, June.
    10. Vanella, Patrizio, 2017. "Age- and Sex-Specific Fertility in Germany until the Year 2040 - The Impact of International Migration," Hannover Economic Papers (HEP) dp-606, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    11. Hatzopoulos, P. & Haberman, S., 2009. "A parameterized approach to modeling and forecasting mortality," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 103-123, February.
    12. Jeff Tayman, 2011. "Assessing Uncertainty in Small Area Forecasts: State of the Practice and Implementation Strategy," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 30(5), pages 781-800, October.
    13. Nico Keilman & Dinh Quang Pham, 2000. "Predictive Intervals for Age-Specific Fertility," European Journal of Population, Springer;European Association for Population Studies, vol. 16(1), pages 41-65, March.
    14. Jukka Lassila & Tarmo Valkonen, 2018. "Longevity, Working Lives, And Public Finances," Contemporary Economic Policy, Western Economic Association International, vol. 36(3), pages 467-482, July.
    15. Giacometti, Rosella & Bertocchi, Marida & Rachev, Svetlozar T. & Fabozzi, Frank J., 2012. "A comparison of the Lee–Carter model and AR–ARCH model for forecasting mortality rates," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 85-93.
    16. Mikko Myrskylä & Joshua Goldstein, 2013. "Probabilistic Forecasting Using Stochastic Diffusion Models, With Applications to Cohort Processes of Marriage and Fertility," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 237-260, February.
    17. Rueda, Cristina & Rodríguez, Pilar, 2010. "State space models for estimating and forecasting fertility," International Journal of Forecasting, Elsevier, vol. 26(4), pages 712-724, October.
    18. Alex Armstrong & Nick Draper & Ed Westerhout, 2008. "The impact of demographic uncertainty on public finances in the Netherlands," CPB Discussion Paper 104, CPB Netherlands Bureau for Economic Policy Analysis.
    19. Vanella, Patrizio, 2017. "Stochastische Prognose demografischer Komponenten auf Basis der Hauptkomponentenanalyse," Hannover Economic Papers (HEP) dp-597, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    20. Meng Xu & Helge Brunborg & Joel E. Cohen, 2017. "Evaluating multi-regional population projections with Taylor’s law of mean–variance scaling and its generalisation," Journal of Population Research, Springer, vol. 34(1), pages 79-99, March.

    More about this item

    Keywords

    forecasting; uncertainty; cohort-component method; forecast errors; simulation; stochastic population forecast; time series;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:demres:v:6:y:2002:i:15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Office (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.