Principal component analysis of day‐ahead electricity price forecasting in CAISO and its implications for highly integrated renewable energy markets
Author
Abstract
Suggested Citation
DOI: 10.1002/wene.504
Download full text from publisher
References listed on IDEAS
- Ying-Yi Hong & Ching-Ping Wu, 2012. "Day-Ahead Electricity Price Forecasting Using a Hybrid Principal Component Analysis Network," Energies, MDPI, vol. 5(11), pages 1-15, November.
- Daoping Wang & Dabo Guan & Shupeng Zhu & Michael Mac Kinnon & Guannan Geng & Qiang Zhang & Heran Zheng & Tianyang Lei & Shuai Shao & Peng Gong & Steven J. Davis, 2021. "Economic footprint of California wildfires in 2018," Nature Sustainability, Nature, vol. 4(3), pages 252-260, March.
- Lu, Renzhi & Hong, Seung Ho & Zhang, Xiongfeng, 2018. "A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach," Applied Energy, Elsevier, vol. 220(C), pages 220-230.
- Naderi, Mobin & Khayat, Yousef & Shafiee, Qobad & Blaabjerg, Frede & Bevrani, Hassan, 2023. "Dynamic modeling, stability analysis and control of interconnected microgrids: A review," Applied Energy, Elsevier, vol. 334(C).
- Michael G. Pollitt & Karim L. Anaya, 2021.
"Competition in Markets for Ancillary Services? The Implications of Rising Distributed Generation,"
The Energy Journal, , vol. 42(1_suppl), pages 1-28, June.
- Michael G. Pollitt and Karim L. Anaya, 2020. "Competition in Markets for Ancillary Services? The Implications of Rising Distributed Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
- Michael G. Pollitt & Karim L. Anaya, 2020. "Competition in Markets for Ancillary Services? The Implications of Rising Distributed Generation," The Energy Journal, , vol. 41(1_suppl), pages 5-32, June.
- Michael G. Pollitt & Karim L. Anaya, 2021. "Competition in Markets for Ancillary Services? The Implications of Rising Distributed Generation," The Energy Journal, , vol. 42(1_suppl), pages 1-2, June.
- Michael Pollitt, 2019. "Competition in Markets for Ancillary Services? The implications of rising distributed generation," Working Papers EPRG1928, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Pollitt, M. & Anaya, K., 2019. "Competition in Markets for Ancillary Services? The implications of rising distributed generation," Cambridge Working Papers in Economics 1973, Faculty of Economics, University of Cambridge.
- Azadeh Shomali & Jonatan Pinkse, 2016.
"The consequences of smart grids for the business model of electricity firms,"
Post-Print
hal-02022695, HAL.
- Azadeh Shomali & Jonatan Pinkse, 2016. "The consequences of smart grids for the business model of electricity firms," Grenoble Ecole de Management (Post-Print) hal-02022695, HAL.
- Daron Acemoglu & Ali Kakhbod & Asuman Ozdaglar, 2017.
"Competition in Electricity Markets with Renewable Energy Sources,"
The Energy Journal, , vol. 38(1_suppl), pages 137-156, June.
- Daron Acemoglu, Ali Kakhbod, and Asuman Ozdaglar, 2017. "Competition in Electricity Markets with Renewable Energy Sources," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
- Weron, Rafal & Misiorek, Adam, 2008.
"Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models,"
International Journal of Forecasting, Elsevier, vol. 24(4), pages 744-763.
- Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," MPRA Paper 10428, University Library of Munich, Germany.
- Florian van Triel & Timothy E. Lipman, 2020. "Modeling the Future California Electricity Grid and Renewable Energy Integration with Electric Vehicles," Energies, MDPI, vol. 13(20), pages 1-20, October.
- Nyangon, Joseph & Byrne, John, 2018. "Diversifying Electricity Customer Choice: REVing Up the New York Energy Vision for Polycentric Innovation," MPRA Paper 91486, University Library of Munich, Germany.
- Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021.
"Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark,"
Applied Energy, Elsevier, vol. 293(C).
- Jesus Lago & Grzegorz Marcjasz & Bart De Schutter & Rafa{l} Weron, 2020. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Papers 2008.08004, arXiv.org, revised Dec 2020.
- Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
- Sreedharan, P. & Farbes, J. & Cutter, E. & Woo, C.K. & Wang, J., 2016. "Microgrid and renewable generation integration: University of California, San Diego," Applied Energy, Elsevier, vol. 169(C), pages 709-720.
- Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).
- Abiodun, Kehinde & Hood, Karoline & Cox, John L. & Newman, Alexandra M. & Zolan, Alex J., 2023. "The value of concentrating solar power in ancillary services markets," Applied Energy, Elsevier, vol. 334(C).
- Joseph Nyangon & John Byrne, 2023. "Estimating the impacts of natural gas power generation growth on solar electricity development: PJM's evolving resource mix and ramping capability," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(1), January.
- Kun Li & Joseph D. Cursio & Yunchuan Sun, 2018. "Principal Component Analysis of Price Fluctuation in the Smart Grid Electricity Market," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
- Hou, Qingchun & Zhang, Ning & Du, Ershun & Miao, Miao & Peng, Fei & Kang, Chongqing, 2019. "Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China," Applied Energy, Elsevier, vol. 242(C), pages 205-215.
- Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
- Talaat, M. & Farahat, M.A. & Elkholy, M.H., 2019. "Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies," Energy, Elsevier, vol. 170(C), pages 668-682.
- Yang, Zhang & Ce, Li & Lian, Li, 2017. "Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods," Applied Energy, Elsevier, vol. 190(C), pages 291-305.
- Woo, C.K. & Chen, Y. & Olson, A. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Electricity price behavior and carbon trading: New evidence from California," Applied Energy, Elsevier, vol. 204(C), pages 531-543.
- Yuan, Jiahai & Li, Xinying & Xu, Chuanbo & Zhao, Changhong & Liu, Yuanxin, 2019. "Investment risk assessment of coal-fired power plants in countries along the Belt and Road initiative based on ANP-Entropy-TODIM method," Energy, Elsevier, vol. 176(C), pages 623-640.
- Debora Maia-Silva & Rohini Kumar & Roshanak Nateghi, 2020. "The critical role of humidity in modeling summer electricity demand across the United States," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Joseph Nyangon & Ruth Akintunde, 2024. "Anomaly Detection in California Electricity Price Forecasting: Enhancing Accuracy and Reliability Using Principal Component Analysis," Papers 2412.07787, arXiv.org.
- Ehsani, Behdad & Pineau, Pierre-Olivier & Charlin, Laurent, 2024. "Price forecasting in the Ontario electricity market via TriConvGRU hybrid model: Univariate vs. multivariate frameworks," Applied Energy, Elsevier, vol. 359(C).
- Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
- Galarneau-Vincent, Rémi & Gauthier, Geneviève & Godin, Frédéric, 2023. "Foreseeing the worst: Forecasting electricity DART spikes," Energy Economics, Elsevier, vol. 119(C).
- Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
- Krishna Prakash N. & Jai Govind Singh, 2023. "Electricity price forecasting using hybrid deep learned networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1750-1771, November.
- Halužan, Marko & Verbič, Miroslav & Zorić, Jelena, 2020. "Performance of alternative electricity price forecasting methods: Findings from the Greek and Hungarian power exchanges," Applied Energy, Elsevier, vol. 277(C).
- Grzegorz Marcjasz, 2020. "Forecasting Electricity Prices Using Deep Neural Networks: A Robust Hyper-Parameter Selection Scheme," Energies, MDPI, vol. 13(18), pages 1-18, September.
- Lehna, Malte & Scheller, Fabian & Herwartz, Helmut, 2022. "Forecasting day-ahead electricity prices: A comparison of time series and neural network models taking external regressors into account," Energy Economics, Elsevier, vol. 106(C).
- Jiang, Ping & Nie, Ying & Wang, Jianzhou & Huang, Xiaojia, 2023. "Multivariable short-term electricity price forecasting using artificial intelligence and multi-input multi-output scheme," Energy Economics, Elsevier, vol. 117(C).
- Yin, Linfei & Qiu, Yao, 2022. "Neural network dynamic differential control for long-term price guidance mechanism of flexible energy service providers," Energy, Elsevier, vol. 255(C).
- Lago, Jesus & De Ridder, Fjo & Vrancx, Peter & De Schutter, Bart, 2018. "Forecasting day-ahead electricity prices in Europe: The importance of considering market integration," Applied Energy, Elsevier, vol. 211(C), pages 890-903.
- He Jiang & Yao Dong & Jianzhou Wang, 2024. "Electricity price forecasting using quantile regression averaging with nonconvex regularization," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1859-1879, September.
- Demir, Sumeyra & Mincev, Krystof & Kok, Koen & Paterakis, Nikolaos G., 2021. "Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting," Applied Energy, Elsevier, vol. 304(C).
- Palacio, Sebastián M., 2020. "Predicting collusive patterns in a liberalized electricity market with mandatory auctions of forward contracts," Energy Policy, Elsevier, vol. 139(C).
- Ciarreta, Aitor & Martinez, Blanca & Nasirov, Shahriyar, 2023. "Forecasting electricity prices using bid data," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1253-1271.
- Chai, Shanglei & Li, Qiang & Abedin, Mohammad Zoynul & Lucey, Brian M., 2024. "Forecasting electricity prices from the state-of-the-art modeling technology and the price determinant perspectives," Research in International Business and Finance, Elsevier, vol. 67(PA).
- Florian Ziel & Rick Steinert & Sven Husmann, 2015. "Forecasting day ahead electricity spot prices: The impact of the EXAA to other European electricity markets," Papers 1501.00818, arXiv.org, revised Dec 2015.
- Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
- Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1520-1532.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:13:y:2024:i:1:n:e504. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.