Comprehensive survey of artificial intelligence techniques and strategies for climate change mitigation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.132827
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hamed Tahami & Ehsan Akbari & Adil Hussein Mohammed & Reza Faraji & Sittiporn Channumsin, 2023. "A Transformerless Enhanced-Boost Quasi-Z-Source Inverter with Low Input Current Ripple for Stand-Alone RES-Based Systems," Energies, MDPI, vol. 16(6), pages 1-33, March.
- Pankaj Verma & Nitish Katal & Bhisham Sharma & Subrata Chowdhury & Abolfazl Mehbodniya & Julian L. Webber & Ali Bostani, 2022. "Voltage Rise Mitigation in PV Rich LV Distribution Networks Using DC/DC Converter Level Active Power Curtailment Method," Energies, MDPI, vol. 15(16), pages 1-16, August.
- Sebastian Sippel & Nicolai Meinshausen & Erich M. Fischer & Enikő Székely & Reto Knutti, 2020. "Climate change now detectable from any single day of weather at global scale," Nature Climate Change, Nature, vol. 10(1), pages 35-41, January.
- Leal Filho, Walter & Wall, Tony & Rui Mucova, Serafino Afonso & Nagy, Gustavo J. & Balogun, Abdul-Lateef & Luetz, Johannes M. & Ng, Artie W. & Kovaleva, Marina & Safiul Azam, Fardous Mohammad & Alves,, 2022. "Deploying artificial intelligence for climate change adaptation," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
- Elbeltagi, Ahmed & Deng, Jinsong & Wang, Ke & Malik, Anurag & Maroufpoor, Saman, 2020. "Modeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 241(C).
- Zhan, Choujun & Cao, Weiwen & Fan, Junyu & Tse, C.K., 2018. "Impulse Weibull distribution for daily precipitation and climate change in China during 1961–2011," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 57-67.
- Michael Keane & Timothy Neal, 2020.
"Comparing deep neural network and econometric approaches to predicting the impact of climate change on agricultural yield,"
The Econometrics Journal, Royal Economic Society, vol. 23(3), pages 59-80.
- Timothy Neal & Michael Keane, 2020. "Comparing Deep Neural Network and Econometric Approaches to Predicting the Impact of Climate Change on Agricultural Yield," Discussion Papers 2020-02, School of Economics, The University of New South Wales.
- Salah L. Zubaidi & Sandra Ortega-Martorell & Patryk Kot & Rafid M. Alkhaddar & Mawada Abdellatif & Sadik K. Gharghan & Maytham S. Ahmed & Khalid Hashim, 2020. "A Method for Predicting Long-Term Municipal Water Demands Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1265-1279, February.
- Joseph Nyangon & Ruth Akintunde, 2024. "Principal component analysis of day‐ahead electricity price forecasting in CAISO and its implications for highly integrated renewable energy markets," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(1), January.
- Alireza Dehghani & Mehdi Alidadi & Ayyoob Sharifi, 2022. "Compact Development Policy and Urban Resilience: A Critical Review," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
- Paul X McCarthy & Xian Gong & Sina Eghbal & Daniel S Falster & Marian-Andrei Rizoiu, 2021. "Evolution of diversity and dominance of companies in online activity," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.
- Kaba, Kazım & Sarıgül, Mehmet & Avcı, Mutlu & Kandırmaz, H. Mustafa, 2018. "Estimation of daily global solar radiation using deep learning model," Energy, Elsevier, vol. 162(C), pages 126-135.
- Joseph Nyangon & John Byrne, 2023. "Estimating the impacts of natural gas power generation growth on solar electricity development: PJM's evolving resource mix and ramping capability," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(1), January.
- Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Taejoon Kim & Haiyan Wang, 2025. "Global Dense Vector Representations for Words or Items Using Shared Parameter Alternating Tweedie Model," Mathematics, MDPI, vol. 13(4), pages 1-40, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.
- Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
- Seong-Hyeon Cha & Sun-Hyeok Kwak & Woong Ko, 2023. "A Robust Optimization Model of Aggregated Resources Considering Serving Ratio for Providing Reserve Power in the Joint Electricity Market," Energies, MDPI, vol. 16(20), pages 1-27, October.
- Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
- Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
- Joseph Nyangon & Ruth Akintunde, 2024. "Anomaly Detection in California Electricity Price Forecasting: Enhancing Accuracy and Reliability Using Principal Component Analysis," Papers 2412.07787, arXiv.org.
- Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
- Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Liang, Xinbin & Liu, Zhuoxuan & Wang, Jie & Jin, Xinqiao & Du, Zhimin, 2023. "Uncertainty quantification-based robust deep learning for building energy systems considering distribution shift problem," Applied Energy, Elsevier, vol. 337(C).
- Feng, Jiaojiao & Wang, Weizhen & Xu, Feinan & Wang, Shengtang, 2024. "Evaluating the ability of deep learning on actual daily evapotranspiration estimation over the heterogeneous surfaces," Agricultural Water Management, Elsevier, vol. 291(C).
- Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
- Haiyan Meng & Yakai Lu & Zhe Tian & Xiangbei Jiang & Zhongqing Han & Jide Niu, 2023. "Performance Evaluation Method of Day-Ahead Load Prediction Models in a District Heating and Cooling System: A Case Study," Energies, MDPI, vol. 16(14), pages 1-19, July.
- Joanna Piotrowska-Woroniak & Tomasz Szul, 2022. "Application of a Model Based on Rough Set Theory (RST) to Estimate the Energy Efficiency of Public Buildings," Energies, MDPI, vol. 15(23), pages 1-13, November.
- Seung-Taek Lim & Ki-Yeon Lee & Dong-Ju Chae & Sung-Hun Lim, 2022. "Design of Mid-Point Ground with Resistors and Capacitors in Mono-Polar LVDC System," Energies, MDPI, vol. 15(22), pages 1-20, November.
- Ling, Jihong & Zhang, Bingyang & Dai, Na & Xing, Jincheng, 2023. "Coupling input feature construction methods and machine learning algorithms for hourly secondary supply temperature prediction," Energy, Elsevier, vol. 278(C).
- Almorox, Javier & Arnaldo, J.A. & Bailek, Nadjem & Martí, Pau, 2020. "Adjustment of the Angstrom-Prescott equation from Campbell-Stokes and Kipp-Zonen sunshine measures at different timescales in Spain," Renewable Energy, Elsevier, vol. 154(C), pages 337-350.
- Umme Mumtahina & Sanath Alahakoon & Peter Wolfs, 2024. "Hyperparameter Tuning of Load-Forecasting Models Using Metaheuristic Optimization Algorithms—A Systematic Review," Mathematics, MDPI, vol. 12(21), pages 1-51, October.
- Sinha, Shruti & Sankar Rao, Chinta & Kumar, Abhishankar & Venkata Surya, Dadi & Basak, Tanmay, 2024. "Exploring and understanding the microwave-assisted pyrolysis of waste lignocellulose biomass using gradient boosting regression machine learning model," Renewable Energy, Elsevier, vol. 231(C).
- Zhang, Yunfei & Zhou, Zhihua & Liu, Junwei & Yuan, Jianjuan, 2022. "Data augmentation for improving heating load prediction of heating substation based on TimeGAN," Energy, Elsevier, vol. 260(C).
- Keyan Zheng & Fagang Hu & Yaliu Yang, 2023. "Data-Driven Evaluation and Recommendations for Regional Synergy Innovation Capability," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
More about this item
Keywords
Climate change; Artificial intelligence; Systematic literature review; Machine learning; Deep learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s036054422402601x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.