IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v67y2024ipas0275531923002581.html
   My bibliography  Save this article

Forecasting electricity prices from the state-of-the-art modeling technology and the price determinant perspectives

Author

Listed:
  • Chai, Shanglei
  • Li, Qiang
  • Abedin, Mohammad Zoynul
  • Lucey, Brian M.

Abstract

Accurate electricity price forecasting (EPF) is crucial to participants and decision-makers within the electricity market. This paper reviews 62 screened literature works on EPF during 2012–2022 in terms of model structure and determinants of electricity price and discusses the evaluation process, model type, research sample, and prediction horizon. From the above efforts, we find that (1) data preprocessing and model optimization are often used to improve forecasting model accuracy; while performance evaluation is essential, extensive performance evaluation benchmarking is still missing; (2) considering electricity price determinants can significantly improve forecasting model accuracy, but there is disagreement over how many and which determinants should be accounted for; (3) while most existing research focuses on point forecasting, interval and density forecasting are more responsive to the range and uncertainty of electricity price changes.

Suggested Citation

  • Chai, Shanglei & Li, Qiang & Abedin, Mohammad Zoynul & Lucey, Brian M., 2024. "Forecasting electricity prices from the state-of-the-art modeling technology and the price determinant perspectives," Research in International Business and Finance, Elsevier, vol. 67(PA).
  • Handle: RePEc:eee:riibaf:v:67:y:2024:i:pa:s0275531923002581
    DOI: 10.1016/j.ribaf.2023.102132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0275531923002581
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2023.102132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    2. Donthu, Naveen & Kumar, Satish & Mukherjee, Debmalya & Pandey, Nitesh & Lim, Weng Marc, 2021. "How to conduct a bibliometric analysis: An overview and guidelines," Journal of Business Research, Elsevier, vol. 133(C), pages 285-296.
    3. Florian Ziel & Rick Steinert, 2017. "Probabilistic Mid- and Long-Term Electricity Price Forecasting," Papers 1703.10806, arXiv.org, revised May 2018.
    4. Zhang, Jinliang & Tan, Zhongfu & Wei, Yiming, 2020. "An adaptive hybrid model for short term electricity price forecasting," Applied Energy, Elsevier, vol. 258(C).
    5. Doering, Kenji & Sendelbach, Luke & Steinschneider, Scott & Lindsay Anderson, C., 2021. "The effects of wind generation and other market determinants on price spikes," Applied Energy, Elsevier, vol. 300(C).
    6. Moreno, Blanca & López, Ana J. & García-Álvarez, María Teresa, 2012. "The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms," Energy, Elsevier, vol. 48(1), pages 307-313.
    7. Peng, Lu & Liu, Shan & Liu, Rui & Wang, Lin, 2018. "Effective long short-term memory with differential evolution algorithm for electricity price prediction," Energy, Elsevier, vol. 162(C), pages 1301-1314.
    8. Mukherjee, Debmalya & Lim, Weng Marc & Kumar, Satish & Donthu, Naveen, 2022. "Guidelines for advancing theory and practice through bibliometric research," Journal of Business Research, Elsevier, vol. 148(C), pages 101-115.
    9. Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
    10. Heikki Peura & Derek W. Bunn, 2021. "Renewable Power and Electricity Prices: The Impact of Forward Markets," Management Science, INFORMS, vol. 67(8), pages 4772-4788, August.
    11. Maciejowska, Katarzyna & Nitka, Weronika & Weron, Tomasz, 2021. "Enhancing load, wind and solar generation for day-ahead forecasting of electricity prices," Energy Economics, Elsevier, vol. 99(C).
    12. Paschen, Marius, 2016. "Dynamic analysis of the German day-ahead electricity spot market," Energy Economics, Elsevier, vol. 59(C), pages 118-128.
    13. Chang, Zihan & Zhang, Yang & Chen, Wenbo, 2019. "Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform," Energy, Elsevier, vol. 187(C).
    14. Lim, Weng Marc & Rasul, Tareq & Kumar, Satish & Ala, Mamun, 2022. "Past, present, and future of customer engagement," Journal of Business Research, Elsevier, vol. 140(C), pages 439-458.
    15. João Pedro Pereira & Vasco Pesquita & Paulo M. M. Rodrigues & António Rua, 2019. "Market integration and the persistence of electricity prices," Empirical Economics, Springer, vol. 57(5), pages 1495-1514, November.
    16. da Silva, Patrícia Pereira & Cerqueira, Pedro A., 2017. "Assessing the determinants of household electricity prices in the EU: a system-GMM panel data approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1131-1137.
    17. Diankai Wang & Inna Gryshova & Mykola Kyzym & Tetiana Salashenko & Viktoriia Khaustova & Maryna Shcherbata, 2022. "Electricity Price Instability over Time: Time Series Analysis and Forecasting," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    18. Gabrielli, Paolo & Wüthrich, Moritz & Blume, Steffen & Sansavini, Giovanni, 2022. "Data-driven modeling for long-term electricity price forecasting," Energy, Elsevier, vol. 244(PB).
    19. Marin Cerjan & Marin Matijaš & Marko Delimar, 2014. "Dynamic Hybrid Model for Short-Term Electricity Price Forecasting," Energies, MDPI, vol. 7(5), pages 1-15, May.
    20. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    21. Singh, Nitin & Mohanty, Soumya Ranjan & Dev Shukla, Rishabh, 2017. "Short term electricity price forecast based on environmentally adapted generalized neuron," Energy, Elsevier, vol. 125(C), pages 127-139.
    22. Faff, Robert & Prasadh, Shyaam & Shams, Syed, 2019. "Merger and acquisition research in the Asia-Pacific region: A review of the evidence and future directions," Research in International Business and Finance, Elsevier, vol. 50(C), pages 267-278.
    23. Mosquera-López, Stephanía & Uribe, Jorge M. & Manotas-Duque, Diego Fernando, 2017. "Nonlinear empirical pricing in electricity markets using fundamental weather factors," Energy, Elsevier, vol. 139(C), pages 594-605.
    24. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
    25. Keles, Dogan & Scelle, Jonathan & Paraschiv, Florentina & Fichtner, Wolf, 2016. "Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks," Applied Energy, Elsevier, vol. 162(C), pages 218-230.
    26. Kostrzewski, Maciej & Kostrzewska, Jadwiga, 2019. "Probabilistic electricity price forecasting with Bayesian stochastic volatility models," Energy Economics, Elsevier, vol. 80(C), pages 610-620.
    27. Yang, Haolin & Schell, Kristen R., 2022. "GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting," Energy, Elsevier, vol. 238(PC).
    28. Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2016. "Day-ahead electricity price forecasting via the application of artificial neural network based models," Applied Energy, Elsevier, vol. 172(C), pages 132-151.
    29. Heydari, Azim & Majidi Nezhad, Meysam & Pirshayan, Elmira & Astiaso Garcia, Davide & Keynia, Farshid & De Santoli, Livio, 2020. "Short-term electricity price and load forecasting in isolated power grids based on composite neural network and gravitational search optimization algorithm," Applied Energy, Elsevier, vol. 277(C).
    30. Homayoun Ebrahimian & Saeed Barmayoon & Mohsen Mohammadi & Noradin Ghadimi, 2018. "The price prediction for the energy market based on a new method," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 31(1), pages 313-337, January.
    31. Kun Li & Joseph D. Cursio & Yunchuan Sun & Zizheng Zhu, 2019. "Determinants of price fluctuations in the electricity market: a study with PCA and NARDL models," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 32(1), pages 2404-2421, January.
    32. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    33. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    34. Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
    35. Drago Papler & Štefan Bojnec, 2012. "Determinants of Costs and Prices for Electricity Supply in Slovenia," Eastern European Economics, Taylor & Francis Journals, vol. 50(1), pages 65-77, January.
    36. Shao, Zhen & Yang, ShanLin & Gao, Fei & Zhou, KaiLe & Lin, Peng, 2017. "A new electricity price prediction strategy using mutual information-based SVM-RFE classification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 330-341.
    37. Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing & Guo, Haixiang, 2017. "Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm," Applied Energy, Elsevier, vol. 190(C), pages 390-407.
    38. Zhang, Xiaobo & Wang, Jianzhou & Gao, Yuyang, 2019. "A hybrid short-term electricity price forecasting framework: Cuckoo search-based feature selection with singular spectrum analysis and SVM," Energy Economics, Elsevier, vol. 81(C), pages 899-913.
    39. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    40. Meng, Anbo & Wang, Peng & Zhai, Guangsong & Zeng, Cong & Chen, Shun & Yang, Xiaoyi & Yin, Hao, 2022. "Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization," Energy, Elsevier, vol. 254(PA).
    41. Tschora, Léonard & Pierre, Erwan & Plantevit, Marc & Robardet, Céline, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Applied Energy, Elsevier, vol. 313(C).
    42. Qiao, Weibiao & Yang, Zhe, 2020. "Forecast the electricity price of U.S. using a wavelet transform-based hybrid model," Energy, Elsevier, vol. 193(C).
    43. Yang, Zhang & Ce, Li & Lian, Li, 2017. "Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods," Applied Energy, Elsevier, vol. 190(C), pages 291-305.
    44. Moreno, Blanca & García-Álvarez, María Teresa & Ramos, Carmen & Fernández-Vázquez, Esteban, 2014. "A General Maximum Entropy Econometric approach to model industrial electricity prices in Spain: A challenge for the competitiveness," Applied Energy, Elsevier, vol. 135(C), pages 815-824.
    45. Yang, Haolin & Schell, Kristen R., 2021. "Real-time electricity price forecasting of wind farms with deep neural network transfer learning and hybrid datasets," Applied Energy, Elsevier, vol. 299(C).
    46. Ziel, Florian & Steinert, Rick, 2018. "Probabilistic mid- and long-term electricity price forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 251-266.
    47. Bijay Neupane & Wei Lee Woon & Zeyar Aung, 2017. "Ensemble Prediction Model with Expert Selection for Electricity Price Forecasting," Energies, MDPI, vol. 10(1), pages 1-27, January.
    48. Bo Hu & Jian Xu & Zuoxia Xing & Pengfei Zhang & Jia Cui & Jinglu Liu, 2022. "Short-Term Combined Forecasting Method of Park Load Based on CEEMD-MLR-LSSVR-SBO," Energies, MDPI, vol. 15(8), pages 1-14, April.
    49. Bublitz, Andreas & Keles, Dogan & Fichtner, Wolf, 2017. "An analysis of the decline of electricity spot prices in Europe: Who is to blame?," Energy Policy, Elsevier, vol. 107(C), pages 323-336.
    50. Mosquera-López, Stephanía & Nursimulu, Anjali, 2019. "Drivers of electricity price dynamics: Comparative analysis of spot and futures markets," Energy Policy, Elsevier, vol. 126(C), pages 76-87.
    51. Léonard Tschora & Erwan Pierre & Marc Plantevit & Céline Robardet, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Post-Print hal-03621974, HAL.
    52. Agrawal, Rahul Kumar & Muchahary, Frankle & Tripathi, Madan Mohan, 2019. "Ensemble of relevance vector machines and boosted trees for electricity price forecasting," Applied Energy, Elsevier, vol. 250(C), pages 540-548.
    53. Goutam Dutta & Krishnendranath Mitra, 2017. "A literature review on dynamic pricing of electricity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1131-1145, October.
    54. Liu, Luyao & Bai, Feifei & Su, Chenyu & Ma, Cuiping & Yan, Ruifeng & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2022. "Forecasting the occurrence of extreme electricity prices using a multivariate logistic regression model," Energy, Elsevier, vol. 247(C).
    55. Sascha Kraus & Matthias Breier & Weng Marc Lim & Marina Dabić & Satish Kumar & Dominik Kanbach & Debmalya Mukherjee & Vincenzo Corvello & Juan Piñeiro-Chousa & Eric Liguori & Daniel Palacios-Marqués &, 2022. "Literature reviews as independent studies: guidelines for academic practice," Review of Managerial Science, Springer, vol. 16(8), pages 2577-2595, November.
    56. Yang, Wendong & Sun, Shaolong & Hao, Yan & Wang, Shouyang, 2022. "A novel machine learning-based electricity price forecasting model based on optimal model selection strategy," Energy, Elsevier, vol. 238(PC).
    57. Kumar, Satish & Sahoo, Saumyaranjan & Lim, Weng Marc & Dana, Léo-Paul, 2022. "Religion as a social shaping force in entrepreneurship and business: Insights from a technology-empowered systematic literature review," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    58. He, Kaijian & Yu, Lean & Tang, Ling, 2015. "Electricity price forecasting with a BED (Bivariate EMD Denoising) methodology," Energy, Elsevier, vol. 91(C), pages 601-609.
    59. Lago, Jesus & De Ridder, Fjo & Vrancx, Peter & De Schutter, Bart, 2018. "Forecasting day-ahead electricity prices in Europe: The importance of considering market integration," Applied Energy, Elsevier, vol. 211(C), pages 890-903.
    60. Sapio, Alessandro & Spagnolo, Nicola, 2016. "Price regimes in an energy island: Tacit collusion vs. cost and network explanations," Energy Economics, Elsevier, vol. 55(C), pages 157-172.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiao, Weibiao & Yang, Zhe, 2020. "Forecast the electricity price of U.S. using a wavelet transform-based hybrid model," Energy, Elsevier, vol. 193(C).
    2. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
    3. Shao, Zhen & Yang, Yudie & Zheng, Qingru & Zhou, Kaile & Liu, Chen & Yang, Shanlin, 2022. "A pattern classification methodology for interval forecasts of short-term electricity prices based on hybrid deep neural networks: A comparative analysis," Applied Energy, Elsevier, vol. 327(C).
    4. Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
    5. Loizidis, Stylianos & Kyprianou, Andreas & Georghiou, George E., 2024. "Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets," Applied Energy, Elsevier, vol. 363(C).
    6. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    7. Liu, Luyao & Bai, Feifei & Su, Chenyu & Ma, Cuiping & Yan, Ruifeng & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2022. "Forecasting the occurrence of extreme electricity prices using a multivariate logistic regression model," Energy, Elsevier, vol. 247(C).
    8. Fang Guo & Shangyun Deng & Weijia Zheng & An Wen & Jinfeng Du & Guangshan Huang & Ruiyang Wang, 2022. "Short-Term Electricity Price Forecasting Based on the Two-Layer VMD Decomposition Technique and SSA-LSTM," Energies, MDPI, vol. 15(22), pages 1-20, November.
    9. Meng, Anbo & Wang, Peng & Zhai, Guangsong & Zeng, Cong & Chen, Shun & Yang, Xiaoyi & Yin, Hao, 2022. "Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization," Energy, Elsevier, vol. 254(PA).
    10. Ehsani, Behdad & Pineau, Pierre-Olivier & Charlin, Laurent, 2024. "Price forecasting in the Ontario electricity market via TriConvGRU hybrid model: Univariate vs. multivariate frameworks," Applied Energy, Elsevier, vol. 359(C).
    11. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2024. "Two-step deep learning framework with error compensation technique for short-term, half-hourly electricity price forecasting," Applied Energy, Elsevier, vol. 353(PA).
    12. Elmore, Clay T. & Dowling, Alexander W., 2021. "Learning spatiotemporal dynamics in wholesale energy markets with dynamic mode decomposition," Energy, Elsevier, vol. 232(C).
    13. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    14. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    15. Gabrielli, Paolo & Wüthrich, Moritz & Blume, Steffen & Sansavini, Giovanni, 2022. "Data-driven modeling for long-term electricity price forecasting," Energy, Elsevier, vol. 244(PB).
    16. Jasiński, Tomasz, 2020. "Use of new variables based on air temperature for forecasting day-ahead spot electricity prices using deep neural networks: A new approach," Energy, Elsevier, vol. 213(C).
    17. Yang, Haolin & Schell, Kristen R., 2021. "Real-time electricity price forecasting of wind farms with deep neural network transfer learning and hybrid datasets," Applied Energy, Elsevier, vol. 299(C).
    18. Marcjasz, Grzegorz & Narajewski, Michał & Weron, Rafał & Ziel, Florian, 2023. "Distributional neural networks for electricity price forecasting," Energy Economics, Elsevier, vol. 125(C).
    19. Lehna, Malte & Scheller, Fabian & Herwartz, Helmut, 2022. "Forecasting day-ahead electricity prices: A comparison of time series and neural network models taking external regressors into account," Energy Economics, Elsevier, vol. 106(C).
    20. Jiang, Ping & Nie, Ying & Wang, Jianzhou & Huang, Xiaojia, 2023. "Multivariable short-term electricity price forecasting using artificial intelligence and multi-input multi-output scheme," Energy Economics, Elsevier, vol. 117(C).

    More about this item

    Keywords

    Determinants of electricity price; Dual decomposition method; Electricity price forecasting; Model optimization; Model structure;
    All these keywords.

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • G1 - Financial Economics - - General Financial Markets
    • H4 - Public Economics - - Publicly Provided Goods
    • L9 - Industrial Organization - - Industry Studies: Transportation and Utilities
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:67:y:2024:i:pa:s0275531923002581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.