IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v31y2021i3p979-1012.html
   My bibliography  Save this article

Optimal stopping under model ambiguity: A time‐consistent equilibrium approach

Author

Listed:
  • Yu‐Jui Huang
  • Xiang Yu

Abstract

An unconventional approach for optimal stopping under model ambiguity is introduced. Besides ambiguity itself, we take into account how ambiguity‐averse an agent is. This inclusion of ambiguity attitude, via an α‐maxmin nonlinear expectation, renders the stopping problem time‐inconsistent. We look for subgame perfect equilibrium stopping policies, formulated as fixed points of an operator. For a one‐dimensional diffusion with drift and volatility uncertainty, we show that any initial stopping policy will converge to an equilibrium through a fixed‐point iteration. This allows us to capture much more diverse behavior, depending on an agent's ambiguity attitude, beyond the standard worst‐case (or best‐case) analysis. In a concrete example of real options valuation under model ambiguity, all equilibrium stopping policies, as well as the best one among them, are fully characterized under appropriate conditions. It demonstrates explicitly the effect of ambiguity attitude on decision making: the more ambiguity‐averse, the more eager to stop—so as to withdraw from the uncertain environment. The main result hinges on a delicate analysis of continuous sample paths in the canonical space and the capacity theory. To resolve measurability issues, a generalized measurable projection theorem, new to the literature, is also established.

Suggested Citation

  • Yu‐Jui Huang & Xiang Yu, 2021. "Optimal stopping under model ambiguity: A time‐consistent equilibrium approach," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 979-1012, July.
  • Handle: RePEc:bla:mathfi:v:31:y:2021:i:3:p:979-1012
    DOI: 10.1111/mafi.12312
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12312
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcel Nutz & Jianfeng Zhang, 2012. "Optimal stopping under adverse nonlinear expectation and related games," Papers 1212.2140, arXiv.org, revised Sep 2015.
    2. Frank Riedel, 2009. "Optimal Stopping With Multiple Priors," Econometrica, Econometric Society, vol. 77(3), pages 857-908, May.
    3. Peter Klibanoff & Massimo Marinacci & Sujoy Mukerji, 2005. "A Smooth Model of Decision Making under Ambiguity," Econometrica, Econometric Society, vol. 73(6), pages 1849-1892, November.
    4. Bayraktar, Erhan & Yao, Song, 2017. "Optimal stopping with random maturity under nonlinear expectations," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2586-2629.
    5. Nishimura, Kiyohiko G. & Ozaki, Hiroyuki, 2007. "Irreversible investment and Knightian uncertainty," Journal of Economic Theory, Elsevier, vol. 136(1), pages 668-694, September.
    6. Chateauneuf, Alain & Eichberger, Jurgen & Grant, Simon, 2007. "Choice under uncertainty with the best and worst in mind: Neo-additive capacities," Journal of Economic Theory, Elsevier, vol. 137(1), pages 538-567, November.
    7. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    8. R. H. Strotz, 1955. "Myopia and Inconsistency in Dynamic Utility Maximization," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 23(3), pages 165-180.
    9. Sara Biagini & Bruno Bouchard & Constantinos Kardaras & Marcel Nutz, 2017. "Robust Fundamental Theorem for Continuous Processes," Post-Print hal-01076062, HAL.
    10. Epstein, Larry G. & Schneider, Martin, 2003. "Recursive multiple-priors," Journal of Economic Theory, Elsevier, vol. 113(1), pages 1-31, November.
    11. Ariel Neufeld & Marcel Nutz, 2012. "Superreplication under Volatility Uncertainty for Measurable Claims," Papers 1208.6486, arXiv.org, revised Apr 2013.
    12. Zuo Quan Xu & Xun Yu Zhou, 2011. "Optimal stopping under probability distortion," Papers 1103.1755, arXiv.org, revised Feb 2013.
    13. Yu-Jui Huang & Adrien Nguyen-Huu, 2018. "Time-consistent stopping under decreasing impatience," Finance and Stochastics, Springer, vol. 22(1), pages 69-95, January.
    14. Luiz E. Brandão & James S. Dyer & Warren J. Hahn, 2005. "Using Binomial Decision Trees to Solve Real-Option Valuation Problems," Decision Analysis, INFORMS, vol. 2(2), pages 69-88, June.
    15. Miao, Jianjun & Wang, Neng, 2011. "Risk, uncertainty, and option exercise," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 442-461, April.
    16. Yu-Jui Huang & Adrien Nguyen-Huu & Xun Yu Zhou, 2018. "General stopping behaviors of naïve and non-committed sophisticated agents, with application to probability distortion," CEE-M Working Papers 18-16, CEE-M, Universitiy of Montpellier, CNRS, INRA, Montpellier SupAgro.
    17. Marcel Nutz & Ramon van Handel, 2012. "Constructing Sublinear Expectations on Path Space," Papers 1205.2415, arXiv.org, revised Apr 2013.
    18. Erhan Bayraktar & Jingjie Zhang & Zhou Zhou, 2021. "Equilibrium concepts for time‐inconsistent stopping problems in continuous time," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 508-530, January.
    19. Eduardo Schwartz, 2013. "The Real Options Approach to Valuation: Challenges and Opportunities," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 50(2), pages 163-177, November.
    20. Robert McDonald & Daniel Siegel, 1986. "The Value of Waiting to Invest," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 101(4), pages 707-727.
    21. James E. Smith & Robert F. Nau, 1995. "Valuing Risky Projects: Option Pricing Theory and Decision Analysis," Management Science, INFORMS, vol. 41(5), pages 795-816, May.
    22. Bayraktar, Erhan & Yao, Song, 2011. "Optimal stopping for non-linear expectations--Part I," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 185-211, February.
    23. Nicholas Barberis, 2012. "A Model of Casino Gambling," Management Science, INFORMS, vol. 58(1), pages 35-51, January.
    24. Hugonnier, Julien & Morellec, Erwan, 2007. "Corporate control and real investment in incomplete markets," Journal of Economic Dynamics and Control, Elsevier, vol. 31(5), pages 1781-1800, May.
    25. Nutz, Marcel & van Handel, Ramon, 2013. "Constructing sublinear expectations on path space," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 3100-3121.
    26. Sara Biagini & Bruno Bouchard & Constantinos Kardaras & Marcel Nutz, 2017. "Robust Fundamental Theorem For Continuous Processes," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 963-987, October.
    27. Heath, Chip & Tversky, Amos, 1991. "Preference and Belief: Ambiguity and Competence in Choice under Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 4(1), pages 5-28, January.
    28. Ghirardato, Paolo & Maccheroni, Fabio & Marinacci, Massimo, 2004. "Differentiating ambiguity and ambiguity attitude," Journal of Economic Theory, Elsevier, vol. 118(2), pages 133-173, October.
    29. Christensen, Sören & Lindensjö, Kristoffer, 2020. "On time-inconsistent stopping problems and mixed strategy stopping times," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 2886-2917.
    30. M. Trojanowska & P. M. Kort, 2010. "The Worst Case for Real Options," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 709-734, September.
    31. Sebastian Ebert & Philipp Strack, 2015. "Until the Bitter End: On Prospect Theory in a Dynamic Context," American Economic Review, American Economic Association, vol. 105(4), pages 1618-1633, April.
    32. T. J. Lyons, 1995. "Uncertain volatility and the risk-free synthesis of derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 117-133.
    33. Trigeorgis, Lenos, 1991. "A Log-Transformed Binomial Numerical Analysis Method for Valuing Complex Multi-Option Investments," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(3), pages 309-326, September.
    34. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    35. Myers, Stewart C., 1977. "Determinants of corporate borrowing," Journal of Financial Economics, Elsevier, vol. 5(2), pages 147-175, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erhan Bayraktar & Zhenhua Wang & Zhou Zhou, 2023. "Equilibria of time‐inconsistent stopping for one‐dimensional diffusion processes," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 797-841, July.
    2. Denis Belomestny & Tobias Hübner & Volker Krätschmer, 2022. "Solving optimal stopping problems under model uncertainty via empirical dual optimisation," Finance and Stochastics, Springer, vol. 26(3), pages 461-503, July.
    3. Yu-Jui Huang & Zhou Zhou, 2022. "A time-inconsistent Dynkin game: from intra-personal to inter-personal equilibria," Finance and Stochastics, Springer, vol. 26(2), pages 301-334, April.
    4. Oumar Mbodji & Traian A. Pirvu, 2023. "Portfolio Time Consistency and Utility Weighted Discount Rates," Papers 2402.05113, arXiv.org.
    5. Xue Dong He & Xun Yu Zhou, 2021. "Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation," Papers 2105.01829, arXiv.org.
    6. Shuoqing Deng & Xiang Yu & Jiacheng Zhang, 2023. "On time-consistent equilibrium stopping under aggregation of diverse discount rates," Papers 2302.07470, arXiv.org, revised Dec 2023.
    7. Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao, Jianjun & Wang, Neng, 2011. "Risk, uncertainty, and option exercise," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 442-461, April.
    2. Zhihua Li & Julia Müller & Peter P. Wakker & Tong V. Wang, 2018. "The Rich Domain of Ambiguity Explored," Management Science, INFORMS, vol. 64(7), pages 3227-3240, July.
    3. Philipp Strack & Paul Viefers, 2021. "Too Proud to Stop: Regret in Dynamic Decisions," Journal of the European Economic Association, European Economic Association, vol. 19(1), pages 165-199.
    4. Yu-Jui Huang & Zhou Zhou, 2022. "A time-inconsistent Dynkin game: from intra-personal to inter-personal equilibria," Finance and Stochastics, Springer, vol. 26(2), pages 301-334, April.
    5. Gao, Yongling & Driouchi, Tarik & Bennett, David J., 2018. "Ambiguity aversion in buyer-seller relationships: A contingent-claims and social network explanation," International Journal of Production Economics, Elsevier, vol. 200(C), pages 50-67.
    6. Johannes Muhle-Karbe & Marcel Nutz, 2018. "A risk-neutral equilibrium leading to uncertain volatility pricing," Finance and Stochastics, Springer, vol. 22(2), pages 281-295, April.
    7. Moreno Othón M., 2014. "Consumption of Durable Goods under Ambiguity," Working Papers 2014-02, Banco de México.
    8. Marcel Nutz & Jianfeng Zhang, 2012. "Optimal stopping under adverse nonlinear expectation and related games," Papers 1212.2140, arXiv.org, revised Sep 2015.
    9. David Roubaud, 2022. "A real option to divest with two correlated sources of ambiguity," Economics Bulletin, AccessEcon, vol. 42(2), pages 591-602.
    10. Georgalos, Konstantinos, 2021. "Dynamic decision making under ambiguity: An experimental investigation," Games and Economic Behavior, Elsevier, vol. 127(C), pages 28-46.
    11. Álvaro Cartea & Sebastian Jaimungal, 2017. "Irreversible Investments And Ambiguity Aversion," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-26, November.
    12. Xue Dong He & Xun Yu Zhou, 2021. "Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation," Papers 2105.01829, arXiv.org.
    13. Driouchi, Tarik & Trigeorgis, Lenos & So, Raymond H.Y., 2020. "Individual antecedents of real options appraisal: The role of national culture and ambiguity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1018-1032.
    14. Julian Holzermann, 2020. "Pricing Interest Rate Derivatives under Volatility Uncertainty," Papers 2003.04606, arXiv.org, revised Nov 2021.
    15. Hölzermann, Julian, 2020. "Pricing Interest Rate Derivatives under Volatility Uncertainty," Center for Mathematical Economics Working Papers 633, Center for Mathematical Economics, Bielefeld University.
    16. Hackbarth, Dirk & Miao, Jianjun, 2012. "The dynamics of mergers and acquisitions in oligopolistic industries," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 585-609.
    17. Kast, Robert & Lapied, André & Roubaud, David, 2014. "Modelling under ambiguity with dynamically consistent Choquet random walks and Choquet–Brownian motions," Economic Modelling, Elsevier, vol. 38(C), pages 495-503.
    18. Paul Viefers, 2012. "Should I Stay or Should I Go?: A Laboratory Analysis of Investment Opportunities under Ambiguity," Discussion Papers of DIW Berlin 1228, DIW Berlin, German Institute for Economic Research.
    19. Soren Christensen & Luis H. R. Alvarez E, 2019. "A Solvable Two-dimensional Optimal Stopping Problem in the Presence of Ambiguity," Papers 1905.05429, arXiv.org.
    20. Konstantinos Georgalos, 2019. "An experimental test of the predictive power of dynamic ambiguity models," Journal of Risk and Uncertainty, Springer, vol. 59(1), pages 51-83, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:31:y:2021:i:3:p:979-1012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.