IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v2y1995i2p73-88.html
   My bibliography  Save this article

Pricing and hedging derivative securities in markets with uncertain volatilities

Author

Listed:
  • M. Avellaneda
  • A. Levy
  • A. ParAS

Abstract

We present a model for pricing and hedging derivative securities and option portfolios in an environment where the volatility is not known precisely, but is assumed instead to lie between two extreme values σminand σmax. These bounds could be inferred from extreme values of the implied volatilities of liquid options, or from high-low peaks in historical stock- or option-implied volatilities. They can be viewed as defining a confidence interval for future volatility values. We show that the extremal non-arbitrageable prices for the derivative asset which arise as the volatility paths vary in such a band can be described by a non-linear PDE, which we call the Black-Scholes-Barenblatt equation. In this equation, the 'pricing' volatility is selected dynamically from the two extreme values, σmin, σmax, according to the convexity of the value-function. A simple algorithm for solving the equation by finite-differencing or a trinomial tree is presented. We show that this model captures the importance of diversification in managing derivatives positions. It can be used systematically to construct efficient hedges using other derivatives in conjunction with the underlying asset.

Suggested Citation

  • M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
  • Handle: RePEc:taf:apmtfi:v:2:y:1995:i:2:p:73-88
    DOI: 10.1080/13504869500000005
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13504869500000005
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504869500000005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    2. Johnson, Herb & Shanno, David, 1987. "Option Pricing when the Variance Is Changing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(2), pages 143-151, June.
    3. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    4. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
    5. Avellaneda Marco & ParaS Antonio, 1994. "Dynamic hedging portfolios for derivative securities in the presence of large transaction costs," Applied Mathematical Finance, Taylor & Francis Journals, vol. 1(2), pages 165-194.
    6. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    9. Laurence K. Eisenberg & Robert A. Jarrow, 1991. "Option pricing with random volatilities in complete markets," FRB Atlanta Working Paper 91-16, Federal Reserve Bank of Atlanta.
    10. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, August.
    3. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, May.
    4. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "Hedging Derivative Securities and Incomplete Markets: An (epsilon)-Arbitrage Approach," Operations Research, INFORMS, vol. 49(3), pages 372-397, June.
    5. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "When Is Time Continuous?," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 3, pages 71-102, World Scientific Publishing Co. Pte. Ltd..
    6. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    7. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    8. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    9. David Heath & Simon Hurst & Eckhard Platen, 1999. "Modelling the Stochastic Dynamics of Volatility for Equity Indices," Research Paper Series 7, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. John S. Ying & Joel S. Sternberg, 2005. "The Impact of Serial Correlation on Option Prices in a Non- Frictionless Environment: An Alternative Explanation for Volatility Skew," Working Papers 05-12, University of Delaware, Department of Economics.
    11. Bertsimas, Dimitris. & Kogan, Leonid, 1974- & Lo, Andrew W., 1997. "Pricing and hedging derivative securities in incomplete markets : an e-arbitrage approach," Working papers WP 3973-97., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    12. Guo, Chen, 1998. "Option pricing with stochastic volatility following a finite Markov Chain," International Review of Economics & Finance, Elsevier, vol. 7(4), pages 407-415.
    13. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 1997. "Pricing and Hedging Derivative Securities in Incomplete Markets: An E-Aritrage Model," NBER Working Papers 6250, National Bureau of Economic Research, Inc.
    14. Barr, Kanlaya Jintanakul, 2009. "The implied volatility bias and option smile: is there a simple explanation?," ISU General Staff Papers 200901010800002026, Iowa State University, Department of Economics.
    15. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    16. Ren-Raw Chen & Oded Palmon, 2005. "A Non-Parametric Option Pricing Model: Theory and Empirical Evidence," Review of Quantitative Finance and Accounting, Springer, vol. 24(2), pages 115-134, January.
    17. K. Ronnie Sircar & George Papanicolaou, 1999. "Stochastic volatility, smile & asymptotics," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(2), pages 107-145.
    18. Schmitt, Christian, 1996. "Option pricing using EGARCH models," ZEW Discussion Papers 96-20, ZEW - Leibniz Centre for European Economic Research.
    19. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    20. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.

    More about this item

    Keywords

    hedging; volatility risk;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:2:y:1995:i:2:p:73-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.